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 Abstract  

 

Despite the rapid growth of Hyper spectral cameras in recent years, its components 

including slits, gratings, collimators and focus lenses are still very expensive and large in size 

as compared to those on which Fabry perot filters integrated sensors used. Cameras available 

in market with integrated filters are very expensive in order to reduce costs and save more 

space, integration technology is required to develop by using CMOSIS sensor. The major 

parts of Hyper spectral camera are slits, gratings, collimator and focus lenses which are  used 

to break down the light into hundreds of bands, collimate it and focuses on the sensor of 

Hyper spectral camera. These parts of camera are very expensive, bulky and heavy. It should 

be cheaper and cover less space without compromising in efficiency. This research work 

proposes the development progress and optimization of Hyper spectral camera by using 

CMOSIS sensor containing integrated Fabry perot filters. In this research work, we aim to 

design small size and cost effective Hyper spectral camera with high resolution.  

Key Words: Hyper spectral; camera; CMOSIS sensor; Fabry Perot filter.  
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1 Introduction 

 

1.1 Hyper spectral Camera 

History of Digital camera instigated at Jet propulsion laboratory by F.Lelly, and idea was 

utilized by Willis Adcock’s in his first filmless camera in 1972. Before this, Analog cameras 

use films to produce images. Digital camera came into being with the concept of digitizing 

images on scanners with arrays of sensor elements. Digital camera invention takes usage of 

camera to new heights from using cameras in our daily life to Remote Sensing Satellites 

(RSS). Remote Sensing Satellites use technology of acquiring information of earth surface 

(land or sea) and atmospheric conditions by using the sensors onboard. Remote sensing 

cameras consist of passive and active sensors[1]. Passive sensors are used to measures energy 

which is naturally available in form of visible wavelengths from sun or emitted through 

thermal infrared source. Passive sensors can only acquire energy when it is naturally 

available as it cannot emits light whereas active sensors produce radiation by their own 

source , emits the light towards the target and investigates its response. Remote Imaging with 

passive sensors is further of three types, panchromatic imaging, multispectral imaging and 

hyper spectral imaging. Panchromatic imaging consist of single channel detector that gather 

the information of broad wavelength in visible region, information consists of physical 

quantity of brightness of the target[2]. 

 

                                                                    Figure 1.1   Panchromatic Imaging 
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Panchromatic imaging is generally rendered in black and white. Multispectral detectors 

contain few spectral bands; each spectral band channel contains information of narrow 

wavelength bands. Multispectral imaging consists of RGB (Red, Green, and Blue) bands with 

in visible regions of wavelength and it gathers the information of brightness and color of the 

target.  

 

                                                                    Figure 1.2 Multi Spectral Imaging 

Hyper spectral  sensors  collects image data with hundreds of small narrow bands ,with large 

amount of each spectral band information it generates continuous spectrum for each image 

cell, Then this information is post processed by some atmospheric or sensor  calibration and 

correction software, e.g.  Adjustments like sensor, atmospheric and terrain effect. Spectral 

response then compared with spectrums of different vegetation’s and minerals available at 

USGS library to recognize the map surface. 

In recent years, Hyper spectral cameras have attracted a lot of attention in the field of RSS 

(Remote Sensing Satellite) as the telescope of RSS, Hyper spectral camera  is main part of 

the satellite that can produce real time imagery during its continues rotation. Panchromatic 

and Multi spectral cameras are old versions that can produce only single band (black and 

white) and multi bands (Red, Green, Blue) images simultaneously, whereas Hyper spectral 

camera can produce image of hundred or more bands that can break the light from visible to 

infrared region , properties of different materials can be detected easily[3]. Hyper spectral 

imaging is a combination of two technologies, Real time imaging and spectroscopy, 

Spectroscopy is process of gathering information of the light emitted and reflected back from 

the targeted image. It is deviation of energy received in the reflected light with all spectrum 
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of wavelength. Spectroscopy in remote sensing is study of light gathered through earth 

surface as shown in Figure 1.3. 

 

Figure 1.3:  Hyper spectral Imaging 

Hyper spectral camera has following main components like focusing mirror, slits, collimator, 

grating lens optics and detector. Internal structure of conventional hyper spectral camera is 

described in the figure below. 

 

Figure 1.5: Hyper spectral camera optics 

Focusing mirror of hyper spectral camera is a fore optics which produces scene of the target 

and focus it on slit, Slits has number of grooves that passes the narrow lines of the focused 

scene which then further passes through the collimator. Collimator is a major component of 

hyper spectral camera that produces parallel beams of rays or radiations these parallel beams 

of radiations of different wavelengths are then focused on detector[4]. Net effect of optics of 

hyper spectral camera is to produce parallel beams for each image pixel of the detector. 
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Sensor has columns of detectors on the array which produce a slice of a hyper spectral image, 

with spectral information in one direction and spatial information (image) in the other. 

Recent progress in hyper spectral imaging is spectral filters which are deposited directly onto 

a sensor chip. Advancement is made on sensor by using linear variable filter concept which 

infect in field of optics allows the placement of spectral filters on the image sensor, this wafer 

level filter integration can influence on the high end equipment which is used for modern 

image sensor production. It eliminates the requirement for other assembly of optics, 

alignment of different steps and other glue layers. The filter layer are in microns and very 

thin as compared to gratings used before.  

 

                 Figure 1.6 Integrated filters on sensor chip 

1.2 Fabry Perot Filters 

Fabry perot filters in the field of optics have same working principle as electronic or passive 

(RLC) filters have in electronics. RLC filters distinguish the required narrow frequency from 

bands of frequency applied to the system whereas fabry perot filters in the same way 

determines the required wavelength of the light to focus on corresponding pixel of the sensor 

from large bandwidth of approaching light[5]. 

Fabry perot filters are working on the phenomena of interference, diffraction or absorption. 

 

1.3 CMOSIS Sensors 

CMOSIS sensors are most advanced and latest technology in the field of optics. It is the most 

advance image sensor used for the real time imaging. CMOSIS imaging sensor has many 

advancements that make it most suitable for hyper spectral imaging systems such as: 
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1. Compactness. 

2. Cost Effective. 

3. Energy Efficient. 

4. Large number of bands. 

The main feature that makes it more suitable for imaging e.g. airborne imaging where camera 

is required to be placed at the bottom of air craft is its compactness. The old versions of the 

camera required different elements to break the light beam into hundreds of narrow bands or 

wavelengths and focus it simultaneously on particular pixel of the sensor .e.g. Slits , grating’s 

and focusing mirrors which make camera heavy and bulky[1]. 

CMOSIS sensor use most modernized Fabry Perot filters to break light and focus desired 

wavelengths precisely on the pixels of the sensor that eliminates the uses of heavy elements 

and make it more compact and suitable for imaging 

 

Figure 1.7: CMOSIS Technology 

Slits, gratings and focusing mirror and all elements are most expensive so the other versions 

are very expensive as compared to CMOSIS. Due to CMOSIS sensor only power board and 

controller contains FPGA and Frame Grabbers are required to produce the image and 

eliminate the cost of other elements. CMOSIS sensors have different features like global and 

rolling shutters that increase the field of view of the sensor, High frame rate due to high speed 

ADC (Analogue to Digital Converters) on a single chip, low noise and high dynamic range. 

CMOSIS sensor has 16 LVDS outputs and option to reduce the output to 2, 4 and 8 that 

reduces the resources used in FPGA and even simple low grade FPGA can be used to process 

the data , Eliminating the external elements and modes of operation makes it more suitable 

energy efficient and cost effective. 
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1.4 Thesis Objectives 

Main objective of the thesis research is to produce compact and cost effective Hyper spectral 

imaging camera by using latest wafer level Fabry-Perot filters integrated on single chip 

sensor CMOSIS CMV 2000. 

 Reducing the extra external optical elements. 

 Wafer level filter integrated sensor with high speed ADC to make it compact and cost 

effective. 

 Reduce LVDS output channels to 4 to reduce the resources of FPGA, and use simple 

low cost FPGA and frame grabber card to reduce power consumption and make it 

cost effective.   

 

1.5  Thesis Outline 

This thesis has been constructed in five chapters. Chapter 1 is of introduction. Literature 

review has been discussed in detail in chapter 2 that discusses all the existing technologies 

regarding Wafer level filter integration on a single chip, Hyper spectral camera system, 

CMOSIS 2000 sensor architecture and  programing techniques, Frame grabber card to from 

the real time image on the device, Buffer IC’s . Chapter 3 has been dedicated to methodology 

that explains the methods adopted to process the data receive from 4 LVDS (Low Voltage 

Differential Signaling) by low cost FPGA and reduce its resources. FPGA process the LVDS 

data from the sensor and converts the serial combination of data to parallel and send to buffer 

IC’s to use it in Frame grabber card. Chapter 4 discusses the results and output waveforms. 

Chapter 0 concludes the thesis and gives research direction for future work in this research 

area.   
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2 Literature Review 

 

This chapter provides an summary of the literature of Fabry Perot filters integrated on sensor 

chip for breaking lights into hundreds of bands and choose the required wavelength on 

desired pixel simultaneously, CMV 2000 sensor its internal techniques and structure, FPGA 

and its modeling technique, impact of solar filters on, CameraLink and frame grabber for 

generation of image on system.  

2.1 Fabry Perot Filters Integrated On Sensor    

Fabry–Perot Filters are interferometers that produce interference of numbers of multiple 

reflection in the middle of two thin plates and condition of interference is 2d sin𝜃= nA, where 

n is an integer and d is the thickness of the plate The Fabry-Perot interferometer is based on 

of numbers of multiple reflection in the middle of two thin plates. All wavelengths that are 

multiple of 2𝜋 satisfy the condition[2]. 

 

 

 

Figure 2.1:  Interference of Febry perot filter 

Fabry-Perot filters have two shining thin plates which has reflection of about 99% has 

reflective inner surfaces with the coefficient of 0.94.Due to highly reflective plane plates 

mounting parallel to each other infinite numbers of parallel beams are generated, these beams 

are distinguished by each other by the number of runs inside the reflective plates and 

constructive interference in produced. As the reflections of beams takes palace with each 

reflection a phase shift of 𝛼𝑅 is produce and when the beams leaves the interferometer from 
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right plate a large phase difference between two wavelengths are generated and this 

phenomena of band separation is explained mathematically. 

 First Beam:      

 𝐸1 = 𝐸𝑜(φ)√𝑇𝑒𝑖𝛼𝑇  . √𝑇𝑒𝑖−𝛼𝑇  𝑒.
𝑖2𝜋𝜎𝑛 

𝑎
𝑐𝑎𝑠𝜑 =   𝑇𝐸𝑜𝑒.

𝑖2𝜋𝜎𝑛 
𝑎

𝑐𝑎𝑠𝜑  ; … … … . .1 

               

Second Beam: 

     𝐸2 = 𝐸1√𝑅𝑒−𝑖𝛼𝑇  𝑒−𝑖2𝜋𝜎𝛿√𝑅𝑒−𝑖−𝛼𝑅 𝑒.
𝑖2𝜋𝜎𝑛 

𝑎
𝑐𝑎𝑠𝜑 =   𝑇𝐸𝑜𝑒.

𝑖2𝜋𝜎𝑛 
𝑎

𝑐𝑎𝑠𝜑  𝑅𝑒−𝑖(2𝛼𝑅+2𝜋𝜌𝛿) 

 

Sum of these in geometrical series: 

𝐸𝜑

𝐸𝑜(𝜑)
=   𝑇𝑒.

𝑖2𝜋𝜎𝑛 
𝑎

𝑐𝑎𝑠𝜑 (1 + 𝑅𝑒−𝑖(2𝛼𝑅+2𝜋𝜌𝛿) + [𝑅𝑒−𝑖(2𝛼𝑅+2𝜋𝜌𝛿)]
2

+ ⋯ ) =
𝑇𝑒.

𝑖2𝜋𝜎𝑛 
𝑎

𝑐𝑎𝑠𝜑 

1 − 𝑅𝑒−𝑖∅
 

 

Where ∅ is = 2𝛼𝑅 + 2𝜋𝜎𝛿. 

 

Figure 2.2 Interferometer at maxima 

 

To achieve such constructive wavelengths the reflective surfaces of the plates must be plane, 

coating of the reflective areas of the plate’s must contain  reflection co-efficient which is 

more likely close to one and light focused on the reflective plates should be parallel. At 

maxima point the intensity is Imax=E2 [5]. 
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2.2 CMOSIS CMV 2000 

The imaging sensor used in hyper spectral camera design with fabry perot filters integrated 

on chip is CMOSIS CMV2000. CMOS commercial image sensor contains 2048 by 1088 

pixels which are shielded up with 2/3 optical inch for vision applications, sensor contains 

array of thousands of micro level pixels with the size of 5.5μm x 5.5μm which are pipelined 

with the global shutter commercially available to increase the coverage of the focused target.  

The CMOSIS CMV2000 sensor contains sixteen channels to transmit 10 and 12 bits of 

LVDS (Low Voltage Differential Signaling) data. The sensor has a gain amplifier which can 

be programed and offset controller that can produce attainable amplification of desired signal 

of that target and minimum desired offset for required output. CMV 2000 has 16 channel 

LVDS output and 2 LVDS channels for control and synchronization each channel has 480 

Mbps maximum attainable speed which generates 340 frames per second on full resolution 

and high frame rate, which is obtained when sensor is used in its row-windowing operational 

mode or row-subsampling operational mode. These modes can be used during Serial parallel 

SPI interface. On –board sequencer can produce internal exposure and all readout timings [6].  

 

Figure 2.3 CMOSIS Sensor 

 

2.2.1 Features and Specifications  

CMV 2000 has 8 different output windows of operation with horizontal and vertical 

mirroring. It has multiplex able different output channels: 2, 4,8,16 with LVDS control and 

DDR (Dual Data Rate) LVDS clock and selectable ADC (Analog to Digital) resolution at 

different frame rate of 10 or 12 bits. It has on-chip temperature sensor and sensor control via 

SPI (Serial Peripheral Interface).  



 

10 

 

CMV 2000 has following specifications: 

 

  Table 2.1 CMV 2000  

 

2.2.2 Sensor Architecture 

 

Figure 2.4: CMV2000 Internal Architecture 
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The internal architecture of CMV 2000 as shows in Figure 2.4, that the internal sequencer 

uses some external input signals and a master clock to generate the required commanding 

signals desired for the acquisition of targeted image. The information of image is stored in the 

micro pixel of the sensor (global shutter) available in active pixel area of the sensor on which 

the target image is exposed and it has 1088 rows and 2048 columns, all the data stored in the 

pixels, and required gain is applied by the sequencer programmed through SPI are then read 

out consecutively row by row. Output of the pixels are in analog form is then fed to Analog 

front end  (AFE) on the sensor which contains ADCs ( Analog to digital converters) which 

concerts the analog output data of imager pixels to digital output with amplification of gain 

and required offsets if necessary. Digital output from ADCs is then read on multiple LVDS 

channels, each channel has 128 columns and rows in Y-direction for data transfer which is 

chose able through row decoder for the multiple windowing operation. Control registers are 

uploaded using SPI interface which are used for the programing of the sensor to generate the 

control signals and synchronizing operation [3]. Array of pixels in sensor is consists of 2048 

x 1088 no of pixels with the size of approximately 5.5μm are designed to achieve maximum 

level of sensitivity with minimum noise. Analog Front with two important parts, amplifier 

and ADC block. Amplifier applies the required gain to pixel signal and ADC converts the 

analog signal to 10/12 bits digital value. A digital offset is also programmed to digital output 

by using SPI interface. LVDS block converts the ADC data to required serial LVDS data at 

maximum attainable frequency of 480Mbps on 18 no of LVDS output pairs that has 32 pins 

for output. LVDS block output contains 16 channels for data and 2 channels for control signal 

and DDR (Dual Data Rate) clock pulse which has half of the frequency of the frequency of 

output signal. Data on control channel also contains 10 to 12 bits of data containing words 

transfer from sensor. Sequencer generates required control signals of the sensor with few 

input signals which are programed by using SPI interface, it is used to load control register to 

sequencer containing data which is used for controlling the operations of the sensor. 

Temperature sensor produces 16 bit output controlled by SPI interface. Clock (CLK_IN) 

describes rate of output of the sensor as input clock is ten to twelve times slower than output 

data rate e.g. maximum output data rate of CMV 2000 is 480Mbps so input clock will be 

48MHz. 
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2.2.3 Frame Rate Control 

Frame transfer rate of the sensor depends on two major factors, one is exposure time and 

other is read out time. If the readout time of the sensor is higher than the exposure time and 

sensor is functioning on default settings with full resolution 10-bits image at 48 MHz at 16 

outputs. This determines that the frame rate will only depends on exposure time. Read out 

time is mainly depends on the following parameters, Output clock speed, ADC bit output 

mode, Number of lines to be read and number of LVDS output [7]. 

With 16 output channels the frame rate with constant parameters are 340 FPS (Frames per 

second). Read time is sum of F-O-T (frame overhead time) and read time shown in Figure 11. 

         𝐹𝑂𝑇 = (𝑓𝑜𝑡𝑙𝑒𝑛𝑔𝑡ℎ + (2 ∗
16

𝑜𝑢𝑡𝑝𝑢𝑡𝑠
) ∗ 129 ∗ 𝑚𝑎𝑠𝑡𝑒𝑟 𝑐𝑙𝑜𝑐𝑘……1

   

Read out time : 

𝑅𝑒𝑎𝑑 𝑜𝑢𝑡 𝑡𝑖𝑚𝑒 = (129 ∗ 𝑚𝑎𝑠𝑡𝑒𝑟 𝑐𝑙𝑜𝑐𝑘 ∗
16

𝑜𝑢𝑡𝑝𝑢𝑡𝑠
) ∗ 𝑛𝑟𝑙𝑖𝑛𝑒𝑠. .2 

 

Figure 2.5 Frame Rate 

2.2.4 SPI Programming 

SPI programing is to write the control information to the on-board registers of the sensor. 

Control information can be written or read on the registers in simple serial interface (SPI).  

 

Figure 2.6 SPI Write Control Information 
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Details of the control information written on the registers are shown in above figure Fig 2.6. 

CMV 2000 writes data on rising edge of SPI clock signal. Clock signal of (SPI _CLK) 

operates on frequency of 48 MHz, SPI_EN enable signal required to be high for half of the 

cycle before first data bit sent and high for a cycle after last data bit. Total control 

information has 16 bits in which first bit will determine control bit, which indicated zero ‘o’ 

read or ‘1’ write on SPI interface [7]. Other seven bits are address bits and last eight bits are 

data bits and are written on MSB first pattern. 

 

Figure 2.7 SPI Read 

SPI read has following procedure as shown in Fig 2.7, Control bit or first bit will be zero for 

read operation of SPI interface, after the address info is received on MSB format and then 

data is received on same pattern. 

 

2.2.5 Reading out the Sensor:  LVDS Data Outputs  

CMV 2000 image sensor provides the image data in form of LVDS (Low Voltage differential 

signaling).CMV 2000 has 18 LVDS outputs in which 16 outputs are for data output channels 

and other 2 are used for controlling and synchronizing the image data with other surrounding 

subsystems.2 pins are used for differential signals of each LVDS output so total 36 pins are 

available for data and controlling that provides 10 to 12 bits of data each [8]. 

Control channels provides the control information, that weather the data received is valid or 

not and clock channel provides clock pulse signal to synchronize the data with frequency half 

of the output data rate frequency e.g. if Output data rate frequency is 480 MHz the clock 

frequency will be 240 MHz 

2.2.6 READ OUT TIMING 

Channels containing the imaging data consists of 128 pixels, each pixel consists of 10 bits of 

data or 12 bits of data. Pixel period of data bit stream is equals to period of  complete  one 

master clock and OH ( Over Head) time exist between the two 128 pixels burst of image data, 

OH has same time as one pixel readout of 10 to 12 bits of data.0000000 
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2.2.6.2    16 Output Channels  

If 16 output channels are used then complete row of image date is sent on a single row of 128 

pixel period with maximum frame rate of 135 frames per second. 

 

Figure 2.8:  16 Channels Output 

 2.2.6.3   8 Output Channels  

If 8 channels output used for transmitting data then (2 x 128) + (2 x 1) master clock periods 

used . The maximum frame rate is reduced half as compared to 16 channels. 

 

Figure 2.9: 8 Channels Output 

2.2.6.4   4 Output Channels 

If 4 channels output used for data then, (4 x 128) + (4 x 1) master clock periods used and 

frame rate reduced with a factor 4. 

 

Figure 2.10:  4 Channels Output 
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2.2.6.5   2 Output Channels 

One row takes (8 x 128) + (8 x 1) master clock periods. 

 

Figure 2.11:  2 Output Channels 

 

2.2.7 PIXEL REMAPPING 

Pixels containing the image data are read at different time and channels , so the read out time 

of the channels determines the  no of output channels.  

 

2.2.7.1   16 Output Channels 

 

Figure 2.12: 128 pixel burst in single row 

 

Fig 18 shows when 16 output channels are used to send the data on LVDS outputs then , 

complete data of the single image row will be send through on a 128 burst of pixels [9]. All 

the 16 output LVDS channels contains data along with the 2 additional LVDS data channels 

that contain control and clock data for controlling and synchronize function. 
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2.2.7.2   8 Output Channels 

 

Figure 2.13  128 pixel burst in two rows 

Fig 19 shows when 8 output channels transmit the data on LVDS outputs then, complete 

image data row will be transmit trough 2 sets of 128 burst of pixels. All the 8 output LVDS 

channels contains data along with the 2 additional LVDS data channels that contain control 

and clock data for controlling and synchronize function. 

 

2.2.7.3   4 Output Channels 

 

Figure 2.14: 128 pixel burst in four rows 

Image data row will be transmit trough 4 sets of 128 burst of pixels. All the 4 output LVDS 

channels contains data along with the 2 additional LVDS data channels.  

2.2.8 Control Channels: 

CMV 2000 has only one dedicated output LVDS channel that contains the control 

information of 10 bits -12 bits. Two pins used for differential signal [10]. Control signal 

determines the validation of the data transmitted through the output channels provides the 

information to synchronize the valid data with the clock signal. 
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Control signals generated by the image sensor CMV 2000 are shown below in Fig 2.15 from 

bit 0 to bit 11 all 12 bit control signal in LSB format. 

 

Figure 2.15 : Control signals on LVDS Ouptut 

2.3 Field-Programmable-Gate -Array 

Field-Programmable-Gate-Array are basically consists of interrelated programmable blocks 

of integrated circuits. Multiple task can be performed by engineer by programed the FPGA 

according to the desired design [11]. 

 

Figure 2.16: Internal Structure of FPGA 

The basic building block of FPGA is a Logic Cell, hundreds and thousands of such logic-cells are 

located in FPGA which is also known as Look –up table. This table can be like act like a RAM. It has at 

least 4 inputs to form any kind of logic gate. 
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Figure 2.17  Loigic Cell in FPGA 

 

 

 

2.3.1 Microsemi A3PE3000 FPGA 
 

Microsemi A3PE3000 is a FPGA of third generation of Flash based FPGA. It has high 

performance and density. Due to its flash technology it is more safe, energy efficient and 

single chip device. Due to its reprogrammable technology it is most beneficial for the design 

engineers and companies require real time implementation of logics. It has 3 million 

programmable gates that support up to 504Kb and 620 input and outputs [12-13].  

Main components are described in the following sub sections: 

Microsemi A3PE3000 FPGA is being used as central part of the FPGA board. The FPGA has 

following important roles in the design:  

1. Accept the LVDS data from the sensor over 04 data channels @ up to 240Mbit/s each 

channel, 2 LVDS clock channel @ 120MHz and 1 control channel @ 240Mbit/s)  

3. Performs bit alignment on the LVDS data. 

4. Generate all clocks needed by the sensor and Camera Link interface  

5. Prepares data for the Camera-Link interface  

6. Sends the data to the Camera-Link together with the control bits and clocks 

  

Following design elements are implemented in the FPGA. 
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Table 2.2 Design Elements Implemented in FPGA 

 

2.4 High Speed LVDS to TTL converter SN65LVDT2 

High Speed LVDS (Low Voltage Differential Signaling) is converted to TTL (Transistor 

Transistor Logic) for the inputs to FPGA [14].  

 

Figure 2.18 LVDS to TTL Logic 
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3 Methodology 

 

This chapter concisely explains the proposed system: Sensor Board, FPGA Board, and Power 

I/O Board, Data transmitted to frame grabber over Camera Link Interface (Base + Medium 

configuration and software used for recover image on computer.   

3.1 Description of Design 

Electronics design of the system consists of the following main components: 

1. Imager module 

2. Frame grabber and display module 

Imager module captures the image using CMV2000 image sensor, perform necessary 

operations to align the data required for Camera link Standard with the help of FPGA and 

then output the data in Base + Medium Camera Link configuration using DS90CR287 

Camera Link ICs. It also provides regulated power required for different parts of the design 

and responsible for performing registers configurations of the CMV2000 Image sensor The 

frame grabber (NI PCIe-1433) is a standard third party card which plugs into a PC’s PCI 

Express bus that acquires the image data and displays it on a computer screen. 

Flow diagram of the design is given below:

 

Figure 3.1 Flow Diagram 
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Main characteristics of our designed electronics part of the system are given below: 

1. Consists of Three PCBs i.e. Sensor Board, FPGA Board, and Power I/O Board. 

2. Total power dissipation < 3.0W 

3. Operating at main clock of 20 MHz. 

4. 12bit quantization. 

5. Data transmitted to frame grabber over Camera Link Interface (Base + Medium 

configuration). 

6. 1200Mbyts/sec (i.e. 100MP/sec) data throughput. 

7. Configurable gain, offset, exposure, and quantization. 

 

3.2  Block Diagram  

Block diagram of CMV-2000 CMOS image sensor based camera electronics is shown in 

figure. Internal structures of the different blocks, data flow through the blocks and their 

required clocks and input channels are described in the block diagram. Imager module design 

consists of CMV2000 image sensor, FPGA, power regulation circuit and Camera-Link 

interface ICs. 

To perform the aforementioned tasks, the imager module consists of following electronic 

boards: 

1. Sensor board 

2. FPGA Board 

3. Power I/O Board 
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Figure 3.2 Block Diagram 
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3.3 Imager Module 

Imager module is responsible for following operations: 

1. Capturing the image using CMV2000 sensor. 

2. Align the data from different channels from the sensor and prepare it in a required 

Camera Link format. 

3. Provide connection to send data to Power I/O board. 

4. Power regulation. 

To perform the tasks, the imager module contains of following electronic boards: 

1. Sensor board 

2. FPGA Board 

3. Power I/O Board 

 

Figure 3.3: Imager Sensor board 

3.3.1 Sensor Board 
 

This part of the Imager Module board includes the sensor socket, CMV2000 image sensor 

and its associated circuit (i.e. decoupling to ground, LVDS circuit and board-to-board 

connectors). Brief Details on main sections of the sensor board are given in the following 

sections: 



 

24 

 

3.3.1.1 Sensor Socket 
 

The sensor can be removed easily from board by using latest ZIF (Zero Insertion Force) 

socket. Sensor can easily be raised up by using metal handle to 90°. By using this socket no 

extra force is required to pull up sensor. It can be properly closed by pulling it down as it 

clicks. The sensor is tightened and cannot fall. The sensor should be placed in the area of the 

socket as given in the picture below: 

 

 

Figure 3.4 Sensor socket 

 

3.3.1.2 CMV 2000 Sensor 
 

The imaging sensor used in hyper spectral camera design with fabry perot filters integrated 

on chip is CMOSIS CMV2000. CMOS image sensor commercially available consists of 2048 

no of pixels in complete row and 1088 pixel in each column, size of each pixels is 

approximately 5.5μm x 5.5μm  

CMOSIS CMV2000 sensor contains sixteen output channels with each channel has 10 bits or 

12-bits of data outputs. The sensor also has a gain amplifier which can be programmed and 

offset controller that can create attainable amplification of chosen signal of that target and 

minimum desired offset for required output. CMV 2000 has 16 channel LVDS output and 2 

LVDS channels for control and synchronization each channel has 480 Mbps maximum 

attainable speed.  
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3.3.1.2.1 Data Out put 

 

The CMV2000 produces digital data on 18 output channels contains LVDS- (low voltage 

differential signaling. 16 Output data from the sensor is then process through FPGA. 1 

channel is used for control signals to identify the correct data bits and control the flow of data 

through the blocks according to desired stream. 1 Clock channel is used to synchronize the 

flow of data through FPGA, camera link and frame grabber.  

Table 3.1 Output Channel Description 

 

 

The 16 data channels transfer data in 10-bit (per pixel) or 12-bit (per pixel) modes. However 

in this design, data is transfer on 12-bit mode to FPGA board for SIPO (Serial in Parallel Out) 

processing and then bit streams of data are generated according to protocols required by 

camera link IC.  

 

The output clock channel contains clock signal, which is used to synchronize the data on the 

receiving end. Data contains different bit streams passing through four different SIPO 

processing blocks of FPGA and then through the buffer block so the synchronization of all bit 

streams are required.  

 

The control channel contains signals of indication for the validation of the data on the data 

channels. Data on the control channel contains 10 or 12-bits of words that are shifted 

synchronous to the 16 data channels.  
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3.3.1.2.2 Input Clock 

 

Input frequency applied to the sensor CMV 2000 determines the output frequency rate at 

which the output data is processed. Output data rate of the LVDS data is much higher than 

input frequency. Output data rate LVDS_CLK at 480 Mbps is achieved with the input master 

clock (CLK_IN) of sensor is 40 MHz 

Table 3.2 Relationship b/w CLK_IN and LVDS Clock 

CLK_IN  LVDS_CLK (12bit mode)  

5 MHz (min) 60 MHz  

10MHz 120MHz 

20MHz 240MHz 

40 MHz (max) 480 MHz  

 
 

The FPGA A3PE3000 supports upto 350MHz, so CLK_IN is set to 25MHz and the 

LVDS_CLK would be 300MHz in the design. 

3.3.1.2.3 Pixel Readout Timing 

 

The 128 pixels of data from imager board is received per channel. Each pixel contains 10/ 12 

bits of data. Pixel period is equals to master clock input and OH ( Over Head) time exist 

between the two 128 pixels burst of image data, OH has same time as one pixel readout of 10 

to 12 bits of data. 

If 4 channels output used for data then, (4 x 128) + (4 x 1) master clock periods used and 

frame rate reduced with a factor 4. 

 

Figure 3.5   4 Channel output readout 

 

Fig 3.5 shows when 4 output channels transmit the data on LVDS outputs then, complete 

image data row will be transmit trough 4 sets of 128 burst of pixels. All the 4 output LVDS 

channels contains data along with the 2 additional LVDS data channels that contain control 

and clock data for controlling and synchronize function. 
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Figure 3.6 Data read Out of 4 channel 

 

3.3.1.2.4  Control channel 
 

CMV 2000 has only one dedicated output LVDS channel that contains the control 

information of 10 bits -12 bits, with two pins used for differential signal. Control signal 

determines the validation of the data transmitted through the output channels provides the 

information to synchronize the valid data with the clock signal. 

Control signals generated by the image sensor CMV 2000 are shown below in Fig 21 from bit 

0 to bit 11 all 12 bit control signal in LSB format. 

 

Table 3.3 Elements of Control Channel 
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3.4 FPGA Board 

The FPGA board consists of Microsemi A3PE3000 FPGA, DS90CR287 Camera Link 

interface IC, LVDS networks, decoupling capacitors, interface connectors for Power I/O 

Board. 

Main components are described in the following sub sections: 

 

Figure 3.7: FPGA and Frame Grabber 

3.4.1 FPGA 
 

Microsemi A3PE3000 FPGA is being used as central part of the FPGA board. The FPGA has 

following important roles in the design:  

1. Accept the LVDS data from the sensor over 04 data channels @ up to 240Mbit/s each 

channel, 1 LVDS clock channel @ 120MHz and 1 control channel @ 240Mbit/s)  

2. Performs bit alignment on the LVDS data. 

4. Generate all clocks needed by the sensor and Camera Link interface  

5. Prepares the data for the Camera Link interface  

6. Sends the data to the Camera Link interface together with the control bits and clocks 

 Following design elements are implemented in the FPGA. 
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Table 3.4 Design Elements Implemented in FPGA 

Design Elements Description 

SR_12 12 bit Shift Register 

Ofd12 12-Bit Output D Flip-Flop 

SR4RE Shift register with serial input and parallel out of 

4-Bit. Containing enable clock and Reset.  

SR8RE Shift register with serial input and parallel out of 

8-Bit. Containing enable clock and Reset.  

CB4CLE  Cascadable Binary loadable 4 bit Counters . 

COMPM4 4-Bit Magnitude Comparator 

OBUF Output buffer 

DCM Digital Clock Manager 

 

Implementation of These elements is provided in the table and screen shots of simulation 

waveforms are discussed in Chapter 4. 

3.4.1.1 VHDL Programming Logic in FPGA 
 

Sensor board produces the data contains image on 4 LVDS output data channels and 2 

channels containing control signal and clock all the 6 LVDS channels are then processed 

through converter IC, which is known as LVDS to TTL converter as LVDS data processing 

through FPGA is very difficult to handle and it will allocate large amount of cells of FPGA 

that will not only increase the allocation but also complex the situation and decrease 

efficiency.  SN65LVDT2 high speed LVDS to TTL IC is used to convert the LVDS data and 

then this data is communicated to FPGA board. 

 

FPGA Board process the data to produce data required according to protocol that will be used 

in Camera Link IC interface, FPGA converts the  bits coming from the sensor and perform 

serial to parallel operation by using shift registers; these serial bits are coming in line in the 

form of burst with OH (Over Head) as discussed earlier in sensor structure, all four channels 

of data and control channels contains TTL logic data are converted to parallel bit streams 

using the shift register in FPGA, and clock channel is used to implement DCM (Digital Clock 
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Manager). DCM is a logic block implemented in FPGA to generate common clock having 

frequency double as compared  to clock frequency of the sensor for the entire buffer IC’s, 

camera link IC’s and frame grabber card. DCM block in FPGA in implemented to 

synchronize all the data which is processes through different block implementation like in 

buffer and camera link protocol during the regular changing of bit streams. 

Implementation of all the blocks in FPGA using XYLINX software is shown in Fig 3.8. 

 

 

 

 

 Figure 3.8:  VHDL Implementation in FPGA 
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SR_12 is a Shift Register Block which shows the 4 input channels with control channels with 

inverted input are processed for SIPO (Serial in Parallel out). 

Ofd 12 are  D-Flip Flop implemented for PIPO (Parallel in Parallel out) configuration , these 

blocks are used for buffering of data to generate delay od 1 clock cycle. 

DCM (Digital Clock Manager) receives the input of control channel and clock, DCM is used 

to generate a common clock signal to synchronize all the data throughout the process, DCM 

produce DDR (Dual Data Rate) output having frequency double as compared to sensor 

Clock. F_clk output used for clock to produce parallel 12 bit streams, Clock _out is used 

output DDR is used for further Frame grabber IC and Capture is used to capture or hold 12 

bit of data to d- flipflps. 

Camera Link block receives 28 bits , 12 bits of data from each data channels and 4 bits of 

control signal containing the info regarding data valid or line valid. IT transmits data to 

Frame grabber card in base and medium configuration contains 2 or 4 channels having 14 or 

7 bits simultaneously and converts to LVDS. 
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3.4.1.1.1 SR_12 Shift Register Block  
 

 

Figure 3.9 : SR _12 Shift Register 

 

SR_12 Block contains 4 bit SR4RE Shift register with Reset enable and output buffer with 

sink source used to increase the current on pins to connect other devices. 
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3.4.1.1.2  12 bit Output D Flip-Flop 
 

D Flip-Flops are used to hold the data for 1 Clock cycle . 

 

 

 

Figure3.10: 12 Bit D Flip-Flop 
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3.4.1.1.3 Camera Link 
 

Camera Link block receives 28 bits , 12 bits of data from each data channels and 4 bits of 

control signal containing the info regarding data valid or line valid. IT transmits data to 

Frame grabber card in base and medium configuration contains 2 or 4 channels having 14 or 

7 bits simultaneously and converts to LVDS 

 

Figure 3.11 Camera Link 
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3.4.1.1.4 DCM (Digital Clock Manager) 
 

DCM is used to generate a common clock signal to synchronize all the data throughout the 

process, DCM produce DDR (Dual Data Rate) output having frequency double as compared 

to sensor Clock. DDR is used to read out the data at same time on both rising edge of the 

frequency and falling edge of the clock signal. F_clk output used for clock to produce parallel 

12 bit streams, Clock _out is used output DDR is used for further Frame grabber IC and 

Capture is used to capture or hold 12 bit of data to d- flipflps. 

 

 

Figure 3.12:  Digital Clock Manager 
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3.4.2 SN65LVDT2 high speed LVDS to TTL 
 

Six SN65LVDT2 are used for high speed (up to 630 Mbps) LVDS to TTL conversion in 

SOT23 package. These ICs are used as following: 

Four ICs for Each LVDS Data (Input to FPGA) 

One IC for LVDS Clock to (Input to FPGA) 

One IC for LVDS Control Channel (input to FPGA) 

  

3.4.3 DS90CR287 Camera Link Transmitter IC 
 

The DS90CR287 IC is a transmitter that transforms 28 bits (24 data bits + 3 control bits +1 

spare bit)  LVTTL data  to four LVDS (Low Voltage Clock Differential Signaling) data 

streams. Every cycle of the Low Power Consumption transmit clock 28 bits of input data are 

sampled. Two ICs are used to implement Base + Medium Configuration of the Camera Link 

Standard at a rate of 100MPixels/sec with 12 bit quantization. 

 

Figure 3.13: Camera Link IC 
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3.5 Power I/O Board 
 

Power I/O Board receives +5V power and regulates it into +3.3V, +3.0V, +2.1V, and +1.8V 

to provide required power to all the components on different boards. Power I/O board has a 

PIC 18L8680 microcontroller for gain and offset settings of CMV2000 image sensor. The 

microcontroller will also be used for health monitoring of the system. Power I/O board also 

has MDR-26F interface Connectors to transmit the image data on Camera Link interface over 

the Camera Link cables to the Frame grabber. 

 

 

Figure 3.14:  Power Board 

 

 

3.6 Software Implementation 

Software used for the image acquisition is Imec system software developed by the OEM 

which produces imec hyperspectral cameras commercially. Software is purchased from OEM 

and used for image acquisition from frame grabber card implemented on card. 

Raw data of the image is acquired through this Imec software and then this raw data is 

processed through MATLAB to produce the signatures of different samples available. 
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3.6.1 Imec software 
 

The imec  hyperspectral imager is designed for commercially available CMOS sensor for the  

vision market. User interface of Imec hyperspectral software is developed for user-friendly 

imaging operations with implementation of integrated camera and materials on the translation 

stage; It has translation stage control to adjust the frame rate and scanning speed of camera. 

It has easy to use GUI(Graphical User Interface), Frame rate; rotational  speed can easily set 

for the line scanning of the camera .Imec software obtain the DN value of the image and the 

reflection of light of the image for each pixel and reflection for the white object, then divide 

the value obtained by white reflection value so we get reflectance values of each image. 

 

Figure 3.15: GUI of Imec software 

3.6.2 MATLAB 
 

MATLAB software is used after raw data of the image is obtained through the imec software. 

Frame grabber data is read through imec software; in which we select the area, scanning and 

integration time of the capturing time. Imec software produce the raw data that include the 

information related to image and reflectance of the light on that point for each pixel of the 

image. 
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As each line of the camera include 2048 *1088 pixels and 100 bands so it produce the value 

of reflection of light for each pixel; 100 bands contains 109 pixels approximately. Raw data 

through the imec software is then processed through MATLAB to create the spectrograph of 

image at any point we want. 

First of all code has been written on MATLAB to call the raw data of the image,as shown in 

the Fig 3.16. 

 

Figure 3.16 MATLAB CODE 

 

Then after the command prompt window appears then we have to select the area of interest to 

develop the spectrograph of respective region as shown in Fig 3.17. 

 



 

40 

 

 

Figure 3.17 Area selection 

 

In Figure 3.18, required are of the image is cropped and paste in the command window. 

 

 

Figure 3.18 Cropping area of image 

 

Figure 42 shows the required coordinates of the position have been pasted in command 

prompt. 

 

Figure 3.19: Coordinates of required area 
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Finally the spectrograph of the required image is shown in Figure 3.20. 

 

Figure 3.20 : Spectrograph through MATLAB 

 

And code written in MATLAB is attached in Appendix. 
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4 Results and Discussion 

 

This chapter gives a brief discussion on the results, output waveforms and data analysis by 

using MATLAB.  

4.1 Simulation of FPGA  

Camera image sensor CMV 2000 produce the image data on 4 channels LVDS and 2 

channels for the control and clock signals and these are also LVDS  then these signals are 

converted to TTL logic from LVDS output and provided to FGPA of the system to convert all 

the four channel signals SIPO (Serial in parallel out) combination with the control signals too 

in that format with the clock  signal used to produce common clock to synchronize all the 

data in blocks of the FPGA , camera link IC and Frame grabber card. 

To implement the design we have performed the simulation of FPGA input and outputs by 

using the assumed values of data through the sensor. Inputs of the FPGA are created to check 

the follow of data through the blocks implemented in FPGA and for that purpose a test bench 

code is written in XYLINX software to simulate performance of logic. Test bench code is 

provided in Appendix. 

Simulations of the design are carried out by creating 4 inputs S1 to S4 for FPGA. These 

inputs are assumed as image data from the sensor to block 1 which is described earlier SR_12 

is the shift register to carry out SIPO combination of the data, All the inputs and control 

signal are in hexadecimal system as the code is written for 12 clock pulses for each logic 1 or 

0, and output to camera link for frame grabber is in 28 bit format so that we can understand 

the functionality as shown in Figure 3.. 

CS is control signal also written in hexadecimal numbers system and in this simulation we 

have set the value 0111 or 7 in hexadecimal for 12 clock pulses. 
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Figure 4.1 Simulation of FPGA 

 

CLK_1 is the clock for the camera link and Frame grabber it has frequency half of the 

frequency of the data processing at DDR (Dual Data Rate). Capture is high after each 12 

clock pulse to hold or capture the data. 

S1 to S4 are different combinations of data, Medium and base are the two outputs that are 

used for camera link IC and frame grabber. Data is simulated in two different combinations in 

Medium combination which is 28 bit output of FPGA is combination of 4bit control signal 

then 12 bit S4 input and 12 bit S3 input. S4 and S3 are increasing numbers as shown in 

simulation. 
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Base output combination is 4bit control signal then 12 bit S2 and the 12 bit S1 , here the 

combination will the inverted form for 12 clock pulses values are 0 and next 12 cycles values 

are F in hexadecimal as shown in Figure 4.1. 

 

Figure 4.2 Simulation Software 

Interrupts are generated at 3.8 usec to check that the system will reset itself on next capture 

signal, Simulation results shown the system reset itself and correct values again are shown in 

Figure 4.2. 

 

4.2 Outputs of  Imec and MATLAB 

Imec hyper spectral imaging software is procured by OEM of CMOSIS sensors. Imec 

software is used to develop the image of line scan imager camera by choosing the desired 

values of integration and rotational stage time. Imec software produces image with raw data 

of image containing value of reflection for each image cell of imager camera containing 

2048*1088 pixels. This raw data then finally used in MATLAB to form the signatures of 

different images of the objects.  

Different minerals and leaves of plant are tested in laboratory and use imec software to 

develop the image of these minerals and raw data which is further used in MATLAB to 

produce the signature or spectrograph of all the images obtained. 

Spectrograph of two different leaves is formed by using these software’s which shows that 

we can easily recognize by using the signatures of different materials during airborne 

imaging as shown in Figure 4.3 and 4.4. 

 



 

45 

 

  

 

 

Figure 4.3 Spectrograph of Fresh leaf 

Figure 4.3 shows the image and spectrograph of fresh leaf for 100 bands which shown that 

the reflectance of fresh leaf has dip at visible band and at green band at RGB region. 

 

Figure 4.4 Spectrograph of Dead leaf 

Spectrograph of dead leaf in Figure 4.4 shows that it has dip in graph at visible band but it 

has no absorption band or dip at green band , hence we can say that we can easily 

distinguished between different objects through spectrograph during airborne imaging. 
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Figure 4.5 Spectrograph of Chromite 

 

Spectrograph of different minerals is also obtained in order to test the results of imaging and 

spectrograph. Spectrograph of Chromite and salt are shows different structure and dips or 

absorption at different band wavelengths that shows it is working properly. 

 

 

Figure 4.6 Spectrograph of Salt 

Figure 4.5 and 4.6 shows the spectrographs of Salt and granite, which shows both have 

different signature curves for different wavelength bands , so we can easily differentiate 

between different minerals by using hyper spectral imaging camera during air borne 

operation. 
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4.3 Hardware Setup 

To verify the functioning of the proposed system it was implemented on hardware. For 

hardware implementation Sensor board, imager board power board PCB’s are designed and 

then outsource it through Smart PCB’s .Smart PCB’s designer company developed our 

PCB’s which are shown in Figure 4.7 and 4.8. 

 

Figure 4.7 Sensor Board 

Hardware PCB designed for sensor board is shown in figure 4.7 , Sensor board contains 

sensor and support IC’s that provide required data to the FPGA board to form real time image 

of the scene . 

 

 

Figure 4.8 FPGA Board 
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Figure 4.8 describes the implementation of FPGA board that receives data signals in LVDS 

format then LVDS to TTL IC’s are used to convert the format of data. FPGA performs SIPO 

(Serial in Parallel out) and then the buffer IC’s and supporting circuitry produces the required 

data on the described protocol of Camera Link IC and Frame Grabber card.  

 

Figure 4.9 Camera Housing with lenses 

 

Figure 2.10 Lenses for sensor 
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These three PCB’s are placed in housing developed for testing facility of the cameras. 

Camera testing platform in formed containing bi-slide movable system for line scanning of 

camera using Fresnel lens and high capacity LED lights as shown in Figure 4.9. 

Test platform is used to scan minerals and stone, as the hyper spectral is line scan camera, it 

scans complete area of image line by line so image scanning set up is developed as shown in 

figure 4.11 in which linear movable bi slider is used to move the minerals below the lens of 

the camera . 

 

Figure 3.11 Test Setup 

 

 

 

 

 

 

 

 

 

 

 



 

50 

 

5 Conclusion & Future Work 

 

This chapter concludes the proposed work in this thesis and also recommends future research 

directions in this field.   

5.1 Conclusion 

Purpose behind this research project was to develop a low cost and compact hyper spectral 

camera that can be used to plot the spectrograph of all materials e.g. minerals and vegetation 

with their real time imagery. To develop hyper spectral camera in which extra optical 

elements will be removed to make it more compact and cost effective by using latest optical 

filter technique which is Fabry-Perot integrated sensor. The intended purpose was achieved 

by using CMOSIS sensor containing thin film optical filters to break the light in to several 

bands and focus the required wavelength of the light to the corresponding pixel of the sensor, 

output channels of the sensor is restricted to 4 LVDS outputs to minimize the resources of 

FPGA. FPGA is programmed to convert the incoming data of the sensor to the required 

format of the data for camera link IC’s and frame grabber card to develop the real time 

image. Imec hyper spectral camera software is outsourced to create the raw data of the image 

and calculate the reflectance of the image for each pixel of the sensor. At last MATLAB code 

is developed to create the spectrograph of all the minerals and vegetation available for testing 

at laboratory. 

 

5.1.1 Cost Effective 
 

Hyper spectral cameras with large optical elements are very much expensive due to their 

large camera structure and design. Cameras available commercially with spectral filters 

implemented sensors are less expensive as compared to old versions but they are expensive 

for countries like us which are underdeveloped. Hyper spectral camera developed in our 

laboratory is very much cheaper as compared to both the version that discussed above. 
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Table 4.1  Cost Comparison 

Old versions with optical 

elements. 

Camera with spectral filters 

commercially available 

Camera developed 

 

       In Rupees (Millions) 

 

 

Approx. 1.5 Million 

Rupees 

 

 

      In Rupees (Millions) 

 

 

Approx. 0.6 Million Rupees 

 

In Rupees (Millions) 

Cost for Sensor                = Rs 0.13 M 

Cost for FPGA                = Rs 0.034 M 

Cost for Camera Link      =Rs 0.02 M 

Cost for Frame Grabber   =Rs 0.05M 

Cost for PCB’s and         = Rs 0.038M 

Housing/Assembly 

Total Cost                        =Rs 0.272M 

 

5.1.2 Compactness 
 

Hyper spectral camera developed at our laboratory is much more compact as compared to the 

versions available with large number of optical components required for their assembly. 

Table 4.2  Size Comparison 

 

Dimensions: 66*189*104 mm 

 

 

Dimension:   44*66*88 mm 

 



 

52 

 

5.2 Future Work 

This research project was based on airborne and laboratory version hyper spectral imaging 

camera. However, this camera can be modified for large applications like payload of remote 

sensing satellite by using CMOSIS sensor having large swath width (Area scanned by sensor 

on earth) and properly designed telescope which have better quality and technology for earth 

sensing. Not only hyper spectral cameras but multi spectral remote sensing satellites can be 

developed by using CMOSIS sensors developed for only three bands Red, Green and Blue. 

In future, functionality of camera link IC can be developed with in FPGA. FGPA can be 

reprogramed to regenerate the bit streams coming out of FPGA will be in format required by 

the frame grabber card for two standards which are Base and Medium required one and two 

serial LVDS lines simultaneously of data containing 24bits. Resources of FPGA can be 

increased but camera design will be simple, reduce complexity and cost and increase the 

compactness of camera. 

Hyper spectral camera is used in mineral and vegetation detection during air borne 

applications. Applications of hyper spectral camera can be enhanced by using it with proper 

additional support systems like LIDAR (Light detection and Ranging) and proper GPS 

(Global positioning system) which make it more effective to develop the mapping of the area 

scanned by the camera. Mapping of location will be helpful after imaging to locate the area 

containing minerals and substances that are useful for us. A proper library of signatures or 

spectrographs of different minerals is required to be developed like USGS (United States of 

Geological Survey) library to compare the signatures obtained by camera for minerals, stones 

and vegetation of our own land. 
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TEST BENCH Code and Schematics 

Vhdl   test bench created from schematic D:\FAIZAN\CMV2000\XILINX\CMV2000_2\CMV2000.sch - 

Mon Oct 31 09:05:27 2016 

-- 

-- Notes:  

-- 1) This test bench template has been automatically generated using types 

-- std_logic and std_logic_vector for the ports of the unit under test. 

-- Xilinx recommends that these types always be used for the top-level 

-- I/O of a design in order to guarantee that the test bench will bind 

-- correctly to the timing (post-route) simulation model. 

-- 2) To use this template as your test bench, change the filename to any 

-- name of your choice with the extension .vhd, and use the "Source->Add" 

--  menu in Project Navigator to import the test bench. Then 

-- edit the user defined section below, adding code to generate the  

-- stimulus for your design. 

-- 

LIBRARY ieee; 

USE ieee.std_logic_1164.ALL; 

USE ieee.numeric_std.ALL; 

LIBRARY UNISIM; 

USE UNISIM.Vcomponents.ALL; 

ENTITY CMV2000_CMV2000_sch_tb IS 

END CMV2000_CMV2000_sch_tb; 

ARCHITECTURE behavioral OF CMV2000_CMV2000_sch_tb IS  

 

   COMPONENT CMV2000 

   PORT( S2 : IN STD_LOGIC;  

          S3 : IN STD_LOGIC;  

          S4 : IN STD_LOGIC;  

          XCLK : IN STD_LOGIC;  
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          CS : IN STD_LOGIC;  

          Capture : OUT STD_LOGIC;  

          CLK_OUT1 : OUT STD_LOGIC;  

          S1 : IN STD_LOGIC;  

          Mediam_Data : OUT STD_LOGIC_VECTOR (27 DOWNTO 0);  

          Base_Data : OUT STD_LOGIC_VECTOR (27 DOWNTO 0)); 

   END COMPONENT; 

 

   SIGNAL S2 : STD_LOGIC; 

   SIGNAL S3 : STD_LOGIC; 

   SIGNAL S4 : STD_LOGIC; 

   SIGNAL XCLK : STD_LOGIC; 

   SIGNAL CS : STD_LOGIC; 

   SIGNAL Capture : STD_LOGIC; 

   SIGNAL CLK_OUT1 : STD_LOGIC; 

   SIGNAL S1 : STD_LOGIC; 

   SIGNAL Mediam_Data : STD_LOGIC_VECTOR (27 DOWNTO 0); 

   SIGNAL Base_Data : STD_LOGIC_VECTOR (27 DOWNTO 0); 

 

BEGIN 

 

   UUT: CMV2000 PORT MAP( 

  S2 => S2,  

  S3 => S3,  

  S4 => S4,  

  XCLK => XCLK,  

  CS => CS,  

  Capture => Capture,  

  CLK_OUT1 => CLK_OUT1,  

  S1 => S1,  

  Mediam_Data => Mediam_Data,  
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  Base_Data => Base_Data 

   ); 

 

-- *** Test Bench - User Defined Section *** 

  

-- **  S1 Data Signal ** 

 

-- ** CLOCK *** 

 

   Sensor_CLK : PROCESS 

    BEGIN 

    XCLK <= '1'; wait for 10 us; 

    XCLK <= '0'; wait for 10 us; 

    END PROCESS; 

 

-- ** CONTROL SIGNAL ** 

   CONTROL_SIG : PROCESS 

    BEGIN 

--  Invalid XX0h 

    CS <= '0'; wait for 40 us; 

--  200h 207h 207h 207h 207h 207h 

    CS <= '0'; wait for 10 us; 

    CS <= '0'; wait for 10 us; 

  CS <= '0'; wait for 10 us; 

    CS <= '0'; wait for 10 us; 

    CS <= '0'; wait for 10 us; 

    CS <= '0'; wait for 10 us; 

    CS <= '0'; wait for 10 us; 

    CS <= '0'; wait for 10 us; 

    CS <= '0'; wait for 10 us;   

    CS <= '1'; wait for 10 us; 
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    CS <= '0'; wait for 10 us; 

    CS <= '0'; wait for 10 us; 

   

  CS <= '1'; wait for 10 us; 

  CS <= '1'; wait for 10 us; 

  CS <= '1'; wait for 10 us; 

  CS <= '0'; wait for 10 us; 

  CS <= '0'; wait for 10 us; 

  CS <= '0'; wait for 10 us; 

  CS <= '0'; wait for 10 us; 

  CS <= '0'; wait for 10 us; 

  CS <= '0'; wait for 10 us; 

    CS <= '1'; wait for 10 us; 

    CS <= '0'; wait for 10 us; 

  CS <= '0'; wait for 10 us; 

   

  CS <= '1'; wait for 10 us; 

  CS <= '1'; wait for 10 us; 

  CS <= '1'; wait for 10 us; 

  CS <= '0'; wait for 10 us; 

  CS <= '0'; wait for 10 us; 

  CS <= '0'; wait for 10 us; 

  CS <= '0'; wait for 10 us; 

  CS <= '0'; wait for 10 us; 

  CS <= '0'; wait for 10 us; 

    CS <= '1'; wait for 10 us; 

    CS <= '0'; wait for 10 us; 

  CS <= '0'; wait for 10 us; 

   

  CS <= '1'; wait for 10 us; 

  CS <= '1'; wait for 10 us; 
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  CS <= '1'; wait for 10 us; 

  CS <= '0'; wait for 10 us; 

  CS <= '0'; wait for 10 us; 

  CS <= '0'; wait for 10 us; 

  CS <= '0'; wait for 10 us; 

  CS <= '0'; wait for 10 us; 

  CS <= '0'; wait for 10 us; 

    CS <= '1'; wait for 10 us; 

    CS <= '0'; wait for 10 us; 

  CS <= '0'; wait for 10 us; 

   

  CS <= '1'; wait for 10 us; 

  CS <= '1'; wait for 10 us; 

  CS <= '1'; wait for 10 us; 

  CS <= '0'; wait for 10 us; 

  CS <= '0'; wait for 10 us; 

  CS <= '0'; wait for 10 us; 

  CS <= '0'; wait for 10 us; 

  CS <= '0'; wait for 10 us; 

  CS <= '0'; wait for 10 us; 

    CS <= '1'; wait for 10 us; 

    CS <= '0'; wait for 10 us; 

  CS <= '0'; wait for 10 us; 

   

  CS <= '1'; wait for 10 us; 

  CS <= '1'; wait for 10 us; 

  CS <= '1'; wait for 10 us; 

  CS <= '0'; wait for 10 us; 

  CS <= '0'; wait for 10 us; 

  CS <= '0'; wait for 10 us; 

  CS <= '0'; wait for 10 us; 
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  CS <= '0'; wait for 10 us; 

  CS <= '0'; wait for 10 us; 

    CS <= '1'; wait for 10 us; 

    CS <= '0'; wait for 10 us; 

  CS <= '0'; wait for 10 us; 

    END PROCESS; 

 

-- ** DATA SIGNAL 1 ** 

   S1_Data_Pattern : PROCESS 

   BEGIN  

--  invalid 

    S1 <= '1'; wait for 10 us; 

    S1 <= '0'; wait for 10 us; 

    S1 <= '1'; wait for 10 us; 

    S1 <= '0'; wait for 10 us; 

--  FFFh 000H FFFh 000h FFFh 000h 

    S1 <= '1'; wait for 10 us; 

    S1 <= '1'; wait for 10 us; 

    S1 <= '1'; wait for 10 us; 

    S1 <= '1'; wait for 10 us; 

    S1 <= '1'; wait for 10 us; 

    S1 <= '1'; wait for 10 us; 

    S1 <= '1'; wait for 10 us; 

    S1 <= '1'; wait for 10 us; 

    S1 <= '1'; wait for 10 us; 

    S1 <= '1'; wait for 10 us; 

    S1 <= '1'; wait for 10 us; 

    S1 <= '1'; wait for 10 us; 

 

    S1 <= '0'; wait for 10 us; 

    S1 <= '0'; wait for 10 us; 
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    S1 <= '0'; wait for 10 us; 

    S1 <= '0'; wait for 10 us; 

    S1 <= '0'; wait for 10 us; 

    S1 <= '0'; wait for 10 us; 

    S1 <= '0'; wait for 10 us; 

    S1 <= '0'; wait for 10 us; 

    S1 <= '0'; wait for 10 us; 

    S1 <= '0'; wait for 10 us; 

    S1 <= '0'; wait for 10 us; 

    S1 <= '0'; wait for 10 us; 

 

    S1 <= '1'; wait for 10 us; 

    S1 <= '1'; wait for 10 us; 

    S1 <= '1'; wait for 10 us; 

    S1 <= '1'; wait for 10 us; 

    S1 <= '1'; wait for 10 us; 

    S1 <= '1'; wait for 10 us; 

    S1 <= '1'; wait for 10 us; 

    S1 <= '1'; wait for 10 us; 

    S1 <= '1'; wait for 10 us; 

    S1 <= '1'; wait for 10 us; 

    S1 <= '1'; wait for 10 us; 

    S1 <= '1'; wait for 10 us; 

 

    S1 <= '0'; wait for 10 us; 

    S1 <= '0'; wait for 10 us; 

    S1 <= '0'; wait for 10 us; 

    S1 <= '0'; wait for 10 us; 

    S1 <= '0'; wait for 10 us; 

    S1 <= '0'; wait for 10 us; 

    S1 <= '0'; wait for 10 us; 
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    S1 <= '0'; wait for 10 us; 

    S1 <= '0'; wait for 10 us; 

    S1 <= '0'; wait for 10 us; 

    S1 <= '0'; wait for 10 us; 

    S1 <= '0'; wait for 10 us; 

 

    S1 <= '1'; wait for 10 us; 

    S1 <= '1'; wait for 10 us; 

    S1 <= '1'; wait for 10 us; 

    S1 <= '1'; wait for 10 us; 

    S1 <= '1'; wait for 10 us; 

    S1 <= '1'; wait for 10 us; 

    S1 <= '1'; wait for 10 us; 

    S1 <= '1'; wait for 10 us; 

    S1 <= '1'; wait for 10 us; 

    S1 <= '1'; wait for 10 us; 

    S1 <= '1'; wait for 10 us; 

    S1 <= '1'; wait for 10 us; 

 

    S1 <= '0'; wait for 10 us; 

    S1 <= '0'; wait for 10 us; 

    S1 <= '0'; wait for 10 us; 

    S1 <= '0'; wait for 10 us; 

    S1 <= '0'; wait for 10 us; 

    S1 <= '0'; wait for 10 us; 

    S1 <= '0'; wait for 10 us; 

    S1 <= '0'; wait for 10 us; 

    S1 <= '0'; wait for 10 us; 

    S1 <= '0'; wait for 10 us; 

    S1 <= '0'; wait for 10 us; 

    S1 <= '0'; wait for 10 us; 
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    END PROCESS; 

 

-- ** DATA SIGNAL 2 ** 

   S2_Data_Pattern : PROCESS 

   BEGIN  

--  invalid 

    S2 <= '1'; wait for 10 us; 

    S2 <= '0'; wait for 10 us; 

    S2 <= '1'; wait for 10 us; 

    S2 <= '0'; wait for 10 us; 

--  FFFh 000H FFFh 000h FFFh 000h 

    S2 <= '1'; wait for 10 us; 

    S2 <= '1'; wait for 10 us; 

    S2 <= '1'; wait for 10 us; 

    S2 <= '1'; wait for 10 us; 

    S2 <= '1'; wait for 10 us; 

    S2 <= '1'; wait for 10 us; 

    S2 <= '1'; wait for 10 us; 

    S2 <= '1'; wait for 10 us; 

    S2 <= '1'; wait for 10 us; 

    S2 <= '1'; wait for 10 us; 

    S2 <= '1'; wait for 10 us; 

    S2 <= '1'; wait for 10 us; 

 

    S2 <= '0'; wait for 10 us; 

    S2 <= '0'; wait for 10 us; 

    S2 <= '0'; wait for 10 us; 

    S2 <= '0'; wait for 10 us; 

    S2 <= '0'; wait for 10 us; 

    S2 <= '0'; wait for 10 us; 

    S2 <= '0'; wait for 10 us; 
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    S2 <= '0'; wait for 10 us; 

    S2 <= '0'; wait for 10 us; 

    S2 <= '0'; wait for 10 us; 

    S2 <= '0'; wait for 10 us; 

    S2 <= '0'; wait for 10 us; 

 

    S2 <= '1'; wait for 10 us; 

    S2 <= '1'; wait for 10 us; 

    S2 <= '1'; wait for 10 us; 

    S2 <= '1'; wait for 10 us; 

    S2 <= '1'; wait for 10 us; 

    S2 <= '1'; wait for 10 us; 

    S2 <= '1'; wait for 10 us; 

    S2 <= '1'; wait for 10 us; 

    S2 <= '1'; wait for 10 us; 

    S2 <= '1'; wait for 10 us; 

    S2 <= '1'; wait for 10 us; 

    S2 <= '1'; wait for 10 us; 

 

    S2 <= '0'; wait for 10 us; 

    S2 <= '0'; wait for 10 us; 

    S2 <= '0'; wait for 10 us; 

    S2 <= '0'; wait for 10 us; 

    S2 <= '0'; wait for 10 us; 

    S2 <= '0'; wait for 10 us; 

    S2 <= '0'; wait for 10 us; 

    S2 <= '0'; wait for 10 us; 

    S2 <= '0'; wait for 10 us; 

    S2 <= '0'; wait for 10 us; 

    S2 <= '0'; wait for 10 us; 

    S2 <= '0'; wait for 10 us; 
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    S2 <= '1'; wait for 10 us; 

    S2 <= '1'; wait for 10 us; 

    S2 <= '1'; wait for 10 us; 

    S2 <= '1'; wait for 10 us; 

    S2 <= '1'; wait for 10 us; 

    S2 <= '1'; wait for 10 us; 

    S2 <= '1'; wait for 10 us; 

    S2 <= '1'; wait for 10 us; 

    S2 <= '1'; wait for 10 us; 

    S2 <= '1'; wait for 10 us; 

    S2 <= '1'; wait for 10 us; 

    S2 <= '1'; wait for 10 us; 

 

    S2 <= '0'; wait for 10 us; 

    S2 <= '0'; wait for 10 us; 

    S2 <= '0'; wait for 10 us; 

    S2 <= '0'; wait for 10 us; 

    S2 <= '0'; wait for 10 us; 

    S2 <= '0'; wait for 10 us; 

    S2 <= '0'; wait for 10 us; 

    S2 <= '0'; wait for 10 us; 

    S2 <= '0'; wait for 10 us; 

    S2 <= '0'; wait for 10 us; 

    S2 <= '0'; wait for 10 us; 

    S2 <= '0'; wait for 10 us; 

    END PROCESS; 

 

-- ** DATA SIGNAL 3 ** 

   S3_Data_Pattern : PROCESS 

   BEGIN  
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--  invalid 

    S3 <= '1'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 

    S3 <= '1'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 

--  FFFh 001H 002h 003h Fh 004h 

    S3 <= '1'; wait for 10 us; 

    S3 <= '1'; wait for 10 us; 

    S3 <= '1'; wait for 10 us; 

    S3 <= '1'; wait for 10 us; 

    S3 <= '1'; wait for 10 us; 

    S3 <= '1'; wait for 10 us; 

    S3 <= '1'; wait for 10 us; 

    S3 <= '1'; wait for 10 us; 

    S3 <= '1'; wait for 10 us; 

    S3 <= '1'; wait for 10 us; 

    S3 <= '1'; wait for 10 us; 

    S3 <= '1'; wait for 10 us; 

 

    S3 <= '1'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 
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    S3 <= '0'; wait for 10 us; 

    S3 <= '1'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 

 

    S3 <= '1'; wait for 10 us; 

    S3 <= '1'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 

 

    S3 <= '0'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 

    S3 <= '1'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 
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    S3 <= '0'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 

 

    S3 <= '1'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 

    S3 <= '1'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 

    S3 <= '0'; wait for 10 us; 

    END PROCESS; 

   

-- ** DATA SIGNAL 4 ** 

   S4_Data_Pattern : PROCESS 

   BEGIN  

--  invalid 

    S4 <= '1'; wait for 10 us; 

    S4 <= '0'; wait for 10 us; 

    S4 <= '1'; wait for 10 us; 

    S4 <= '0'; wait for 10 us; 
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--  FFFh 000H FFFh 000h FFFh 000h 

    S4 <= '1'; wait for 10 us; 

    S4 <= '1'; wait for 10 us; 

    S4 <= '1'; wait for 10 us; 

    S4 <= '1'; wait for 10 us; 

    S4 <= '1'; wait for 10 us; 

    S4 <= '1'; wait for 10 us; 

    S4 <= '1'; wait for 10 us; 

    S4 <= '1'; wait for 10 us; 

    S4 <= '1'; wait for 10 us; 

    S4 <= '1'; wait for 10 us; 

    S4 <= '1'; wait for 10 us; 

    S4 <= '1'; wait for 10 us; 

 

    S4 <= '0'; wait for 10 us; 

    S4 <= '0'; wait for 10 us; 

    S4 <= '0'; wait for 10 us; 

    S4 <= '0'; wait for 10 us; 

    S4 <= '0'; wait for 10 us; 

    S4 <= '0'; wait for 10 us; 

    S4 <= '0'; wait for 10 us; 

    S4 <= '0'; wait for 10 us; 

    S4 <= '0'; wait for 10 us; 

    S4 <= '0'; wait for 10 us; 

    S4 <= '0'; wait for 10 us; 

    S4 <= '0'; wait for 10 us; 

 

    S4 <= '1'; wait for 10 us; 

    S4 <= '1'; wait for 10 us; 

    S4 <= '1'; wait for 10 us; 

    S4 <= '1'; wait for 10 us; 
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    S4 <= '1'; wait for 10 us; 

    S4 <= '1'; wait for 10 us; 

    S4 <= '1'; wait for 10 us; 

    S4 <= '1'; wait for 10 us; 

    S4 <= '1'; wait for 10 us; 

    S4 <= '1'; wait for 10 us; 

    S4 <= '1'; wait for 10 us; 

    S4 <= '1'; wait for 10 us; 

 

    S4 <= '0'; wait for 10 us; 

    S4 <= '0'; wait for 10 us; 

    S4 <= '0'; wait for 10 us; 

    S4 <= '0'; wait for 10 us; 

    S4 <= '0'; wait for 10 us; 

    S4 <= '0'; wait for 10 us; 

    S4 <= '0'; wait for 10 us; 

    S4 <= '0'; wait for 10 us; 

    S4 <= '0'; wait for 10 us; 

    S4 <= '0'; wait for 10 us; 

    S4 <= '0'; wait for 10 us; 

    S4 <= '0'; wait for 10 us; 

 

    S4 <= '1'; wait for 10 us; 

    S4 <= '1'; wait for 10 us; 

    S4 <= '1'; wait for 10 us; 

    S4 <= '1'; wait for 10 us; 

    S4 <= '1'; wait for 10 us; 

    S4 <= '1'; wait for 10 us; 

    S4 <= '1'; wait for 10 us; 

    S4 <= '1'; wait for 10 us; 

    S4 <= '1'; wait for 10 us; 
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    S4 <= '1'; wait for 10 us; 

    S4 <= '1'; wait for 10 us; 

    S4 <= '1'; wait for 10 us; 

 

    S4 <= '0'; wait for 10 us; 

    S4 <= '0'; wait for 10 us; 

    S4 <= '0'; wait for 10 us; 

    S4 <= '0'; wait for 10 us; 

    S4 <= '0'; wait for 10 us; 

    S4 <= '0'; wait for 10 us; 

    S4 <= '0'; wait for 10 us; 

    S4 <= '0'; wait for 10 us; 

    S4 <= '0'; wait for 10 us; 

    S4 <= '0'; wait for 10 us; 

    S4 <= '0'; wait for 10 us; 

    S4 <= '0'; wait for 10 us; 

    END PROCESS; 

 

-- *** End Test Bench - User Defined Section *** 

 

END; 
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                                Code for MATLAB  

 

 

clc 
if exist('d') 
clear d 
end 

  
if exist('k') 
    k=k+1; 
else 
    k=1; 
end 
a=multibandread('mix 34561.raw',[2992 2048 100],... 
    'int16',0,'bil','ieee-le',... 
    {'Band','Direct',[25 50 75]}); 

  
imtool(a/max(max(max(a)))) 
clear a 
msg=sprintf(' Select crop icon. Drag the rectangle on image. \n Right click 

and copy position. \n Paste here then enter. \n'); 
b=(input(msg)); 
clc 
% close all 
figure 
d=NaN(1,100); 
if isnumeric(b) && ~isempty(b) 
    for i=1:100 
        a=multibandread('mix 34561.raw',[2992 2048 100],... 
            'int16',0,'bil','ieee-le',... 
            {'Band','Direct',i}); 
        c=a(b(2):(b(2)+b(4)),b(1):(b(1)+b(3))); 
        d(i)=mean(mean(c)); 
        plot(d/max(d)) 
        axis([1 100 0 1.2]) 
        title([num2str(i),'%']); 
        drawnow 
    end 
    title(['Its a normalize value multiply by ',num2str(max(d)),' factor to 

get real magnitude']); 
end 
close all 
clear b msg i c a  
x(k,:)=d; 
plot(x') 
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