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                      Nomenclature 

ST:             Stretching sheet 

AMT:         Across mass transfer 

MHD:        Magneto hydro dynamics 

SC:             Slip condition 

N.S. SC:     Navier Stokes Slip condition 

VIF:            Viscous incompressible fluid 

MF:             Magnetic field 

SM:             Shooting Method 

SS:              Shear Stress 

Cvg:             Convergence 

HTP:            Heat transfer phenomenon 

 

 

  



5 

List of Contents 

Acknowledgement 

Abstract ....………….……………………………………………………….9 

Chapter 1 

1. Basic concepts and literature review ….…………………..…….......10 

1.1 Introduction ………………..……………………………...……..10 

1.2 Basic Definitions ………………..……………………………….12 

1.2.1 Flow …………………..…………………………………………..12 

1.2.2 Fluid …...…………………………..……………………………..12 

1.2.3 Kinematic viscosity ……………….……………………..…….…12 

1.2.4 Incompressible fluid …………………… ………………….....….12 

1.2.5 Unsteady  and steady flow ………………………..…..………….12 

1.2.6  3D flow …………….. ………………...……………….………...13 

1.2.7  Turbulent and laminar flow ……………………...………...…….13 

1.2.8  Law of conservation of mass ………………………….....………13 

1.2.9  Momentum law of conservation ...……………………...…..……13 

1.2.10  Newton’s viscosity law …………….....…….………………..….14 



6 

1.2.11  Navier Stokes Equations ………………...……..……….....…….14 

1.2.12  Coefficient of skin friction …………………………………..….15 

1.2.13  No Slip condition …………………...…………….....…………..15 

1.2.14  Slip condition ………………………………………………...….15 

1.2.15  Magnetohydrodynamics ………………..………..…...………….15 

1.2.16  Equation of Maxwell in MHD ……………………..……..……..16 

1.2.17  Gauss’s law for electricity …………………….….……………..16 

1.2.18   Gauss’s law of magnetism ……………………………………...16 

1.2.19   Faradays law of induction ………………………………………16 

1.2.20   Ampere’s law …………………………………………………...17 

1.2.21   Hartmann number ………………………………………………17 

1.2.22   Reynold number ………………………………………………..17 

1.2.23   Knudsen number ………………………………………………..18 

1.2.24   Eckert number …………………………………………………..18 

1.2.25   Prandtl number ………………………………………………….18 

1.2.26   Thermal conductivity ……………………………..……………19 

 



7 

Chapter 2 

2.       Across Mass Transfer Phenomenon in MHD Flow with Slips 

Conditions 

2.1 Introduction …………………………………………………………20 

2.2 Statement of the problem …………………………………………...21 

2.3 Analytic Solution by HAM …………………...…………………….22 

2.3.1 Mth order Deformation …………………………………………......23 

2.3.2 Confluence of HAM ……………………………………………..….24 

2.4 Outcomes and discussions ………………………………………….24 

2.5 Conclusion  ……………………………………….…………..….....30 

Chapter 3 

3. Calculation of Temperature Distribution for Viscous Incompressible Flow 

with Constant Thermal Conductivity 

3.1 Introduction …………………………………………………………31 

3.2 Mathematical formulation of the problem ………………………….31 

3.3 Analytic HAM Solution …………………………………………….33 

3.3.1 Mth order Deformation ………………………………….,,,,,……..34 



8 

3.3.2 Convergence of HAM Solution …………………………………….34 

3.4 Numerical Outcomes and Discussions ……..……………………….35 

3.5 Conclusion ……….………………….…………………………...…43 

4 References …………………………………………..………………44 

 

   

 

 

 

 

 

 



9 

                          Abstract 

 The investigation of heat and mass transfer is the top consideration for 

mathematicians. In light of its vital applications in the field of polymer engineering, the 

consideration of heat transaction procedure from a stretching sheet to the boundary layer 

fluid has been developed completely. The aim of work is to attain the temperature profile 

by varying the different parameters having constant thermal conductivity .Generally , 3D 

flow of a viscous incompressible fluid has been assessed in the existence of AMT 

phenomenon. The impact of injection and suction has been deliberated in detail. The 

fundamental system has the equations, i.e.  Momentum equation (M.eq) and Energy 

equation (E.eq) which are transformed into Ordinary Differential equations (ODEs) by 

means of similarity alteration. The solution of the problem has been achieved by utilizing 

analytical method i.e. homotopy analysis method (HAM). The precision of this technique 

is occurred in literature for further problems. The graphs of various parameters present the 

solution of the problem. 

 

  



10 

Chapter # 1 

Basic Concepts And Literature Review 

1.1 Introduction 

 Fluid dynamics is the part of mathematics which causes us to think about the fluid 

movement. It incorporates the movement of gases just as the movement of fluids. Because of the 

vast applications in the field and industry, researchers have performed unlimited research on it. A 

vital research is completed for the BLF around ST . From last few years, the study of heat has been 

source of excessive attention for mathematicians. Calculation of viscous drag on ST is the main 

part of these problems. Day by day researchers are working to build new techniques to decrease 

and overcome the viscous hindrance on rigid boundary. However fluid mechanics has become the 

most stimulating sub area of mathematics. Wear on, a number of theories and researches have been 

done, which are good accumulation. Because of its vital applications in the field of polymer 

engineering, the investigation of heat exchange procedure from a ST to the encompassing liquid 

has developed significantly. Various composing has been dedicated to the examination of most 

appropriate flow which can generate a most extreme proportion of heat from the hot boundary to 

the encompassing fluid. Analysis of heat interchange of a viscous fluid flow around a ST was first 

concentrated by Crane [1].He considered a 2D BLF of a viscous liquid over a ST and displayed a 

closed structure arrangement. In any case, the composition needs in giving a satisfactory material 

on 3D flows with heat conversation phenomenon, yet at the same time, a lot of work has been  

presented. For example, the 3D heat flow in a duct of subsidiary extending wall in a pivoting 

medium. 

 In genuine practice, it is seen that such sort of studies are progressively convenient in 

limited area. In this concern Munawar [2] researched the impact of clasping on the hydro dynamic 

stream in a turning duct of subordinate extending wall. As of late, Mehmood [3] examined the 3D 

stream in a permeable duct of subordinate distending wall .The author presented the AMT 

phenomenon by taking infusion at upper part and suction at lower part of the plate and effectively 

displayed that by compelling appropriate number of terms of injection and suction ratio at the 
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higher and subsidiary part of the plates, the viscous drag on ST can definitely be précised and 

accustomed. HAM is used for solving the fundamental nonlinear diff .eqs. HAM is extensively 

used by the researchers [4],[5],[6],[7],[8],[9],[10]. Additionally, Mehmood [11]examined the heat 

move exploration in a comprehensive 3D stream of a viscous fluid in a duct expecting the top side 

of the duct as a permeable sheet exposed to constant infusion.  Accordingly, it is required to 

implement some appropriate stream suppositions under which the impact of viscous dissipation 

can be decreased. Some increasingly vital commitments are referencing here. Ziabakhsh [12] 

examined the analytic solution for chemically reactive species over nonlinear ST. Tamayol [13] 

deliberated the thermal analysis in a permeable medium. Also Moghim [14] worked on the 

application of HAM. Seth [15] imparted the exploration of MHD flow nearby a nonlinear ST by 

means of N.S SC. Khan [16] conferred the effects of viscidness in a permeable medium. Cortell 

[17] studied the arithmetical solution of an un-steady 2D nano flow over a ST. Furthermore [18], 

[19], [20], [21],[22], [23], [24] [25], [26], [27],[28] and [29] have great worth in research field. 

 Chapter 1 conveys the fundamental ideas and definitions that are utilized in next sections. 

Essential administering conditions depicting the stream of the viscous fluid are planned by utilizing 

central laws of preservation of mass and energy. Some basic amounts of physical intrigue, for 

example skin friction coefficient, Maxwell conditions and dimensionless numbers are additionally 

presented in this part. 

 Chapter 2 manages the explanatory investigation of viscous flow inside a duct restricted 

by two sheets. The upper part of it is exposed to the consistent infusion and uniform suction is 

taken at the subordinate ST. This phenomenon is known as AMT. The HAM is utilized to get an 

investigative answer for two or three nonlinear diff. eqs. The arrangement is examined in detail by 

plotting diagrams and tables. The consideration exhibited in this part is a survey of an article by 

[30]. 

 Chapter 3 is the extension of the past issue by taking the SC on the bottom side of the duct 

within the sight of magnetic flied impact. It is well known truth that the skin friction increases in 

the hydro magnetic flows. Therefore the slip condition is familiarized to diminish the wall shear 

force on the ST and calculate the temperature distribution for viscous incompressible flow with 

constant thermal conductivity. The impact of various factors on temperature has been remarked. 

The foremost nonlinear diff. eqs are resolved with HAM to get an analytic solution. 
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1.2 Basic definitions  

1.2.1 Flow 

 The relentlessly and consistently motion of a liquid or gas in a stream is called flow.  

1.2.2 Fluid 

 A substance that has no fixed shape and yields effectively to external pressure. 

1.2.3 Kinematic viscosity 

 It is denoted by   and mathematically defined by 

 





    (1.1) 

1.2.4 Incompressible fluid 

  For incompressible fluid  is constant.       

 .V 0   (1.2) 

1.2.5 Unsteady and steady flows 

The stream for which all the liquid properties rely upon time is called unsteady flow. In 

fact, more or less all flows are unsteady in some sense. Otherwise steady flow.  

i.e 0
L

t





  (1.3) 

Where L stands for any fluid property. 

 

   

1.2.6  3D flow 

 3D flow denotes the number of space coordinates required to define a flow. 
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1.2.7 Turbulent and laminar flows 

 The flow in which the velocity of the fluid is constant at any point of the fluid is called 

laminar flow. In this flow each particle of the fluid flows in smoot path. While, the irregular flow 

is called turbulent flow and the velocity of fluid does not remain constant. 

1.2.8    Law of conservation of mass 

 The mass of the structure must stay consistent after some time, as structure's mass can't 

change, so sum can't be included nor evacuated. Consequently, the degree of mass is restricted 

after some time. In fluid dynamics, law of conservation of mass expresses that the net difference 

in mass inside a given control volume is equivalent to the contrast between the amount of mass 

entering and that leaving the size controller. 

 It is characterized as 

  . 0
V S

dV n V dS
t

 
 

  
  
   (1.4) 

in which the initial part signifies change rate of mass within the size controller and the later one 

implies net mass rate change out over the control surface. The assimilated element stated that the 

significant part of the flow i.e.  dS, ρ stands for the density and n is the component normal to the 

plane. 

1.2.9   Momentum law of conservation 

 This law states that for two colliding bodies in an isolated system, the all-out momentum 

when the impact is equivalent, unless an external force is exerted on it. . Arithmetically it is denoted 

as  

 F = ma (1.5) 

 F is used for the applied force, a denotes the acceleration and m the mass of the fluid 

element .  From eq. (1.5) we have  

 
body surface

dV
f f f

dt
       (1.6) 
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 Here, f is the applied force which is additionally part into two sections; the body constrain 

and the surface power. First one are those which apply all in all mass of the liquid component and 

the later are those which apply weight on the sides of the liquid component. 

1.2.10      Newton’s law of viscosity 

 The pressure among nearby liquid layers is connection to the speed inclination between the 

two layers. Mathematically, 

 
du

dy
      (1.7) 

And 

 
du

dy
      (1.8) 

 Where, τ is the tangential stress, μ the constant of proportionality and du/dy the rate of 

deformation. The fluids which follow the viscosity law of Newton are called Newtonian fluid (NF) 

and that do not follow the viscosity law of Newton are called Non Newtonian fluids (NNF). Water 

,oil, alcohol etc are NF while suspensions and gels are NNF. 

1.2.11   Navier stokes equations 

 For incompressible viscous fluids, the vector form of N.S. eqs is 

 
 . .

V
V V T b

t
  


   
  (1.9) 

 Here, density is denoted by  , T stands for Cauchy tensor, b the body constrain and V 

shows velocity of the flow. The Cont.eq is 

  .V=0 (1.10) 

 N.S eq of motion for 3D  VIF  is 

 
ji i

i

i j j i

uDu up
F

Dt x x x x
  

   
            

 (1.11) 

And the N.S eq for 3D  VCF is  
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2

3

ji i k
i ij

i j j i k

uDu u up
F

Dt x x x x x
   

    
              

 (1.12) 

1.2.12   Coefficient of skin friction 

 It is because of the fluid’s friction close to the outside of an object that is traveling through 

it. The symbol used to denote it is w and mathematically represented as  

 
0

limw
y

du

dy
 



 
  

 
   (1.13) 

And the coefficient of skin friction is defined as 

 
2

w
fC

U



 



 (1.14) 

1.2.13   No-slip condition 

 For viscous fluids it is assumed that at a strong bound, the liquid will have zero speed near 

to the bound. 

1.2.14   Slip condition 

 The slip wall condition is for the instance when viscous effects at the wall are minor or the 

mesh size is greater than the boundary layer thickness. The boundary resists the slipping with a 

shear force relational to the slip velocity. Along these lines we can compose it as 

 
w

u
u U

n



 
  (1.15) 

 Where, n is the coordinate normal to the wall, λ the slip length and wU the velocity of the 

wall. 

1.2.15   Magnetohydrodynamics 

 MHD for short, is the part of fluid mechanics in which the fluid is electrically leading and 

travels in an attractive field. The essential hypothesis behind MHD is that attractive field actuates 

current in a moving conductive liquid, which hence makes controls on the liquid and besides 
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changes the attractive field itself. The conditions that depict the movement of a leading fluid in a 

irresistible field are known as Maxwell’s eqs.   

1.2.16    Equations of Maxwell in MHD 

 These are a bundle of four incomplete distinctive conditions that depict how electric and 

MF proliferate, communicate and are influenced by substances. 

 

1.2.17   Gauss’s law for electricity 

 It expresses that in a closed region the over-all of the electrical fluidity coming of it is 

equivalent to voltage surrounded divided by the permittivity.  Its numerical expression is  

 . E=
0




 (1.16) 

 Where, 0 the electric permittivity which is constant. E is the electric flux, and ρ the total 

voltage. 

1.2.18   Gauss’s law of magnetism 

 It is defined as in a closed region the total magnetic flux coming out is equal to zero. 

Arithmetically  , 

 . B = 0 (1.17) 

Where, B is the total magnetic flux. 

1.2.19   Faraday’s law of induction 

 It is termed as in a closed path, the EMF made is correspondent to the time rate of progress 

of irresistible transition all through the way. Its mathematical formulation is 

 E=
B

t





 (1.18) 

This expression is also known as Maxwell Faraday eq. 
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1.2.20   Ampere’s law 

 The mathematical form of Ampere’s law  is given by 

 B = 0 0

E
J

t
 

 
 

 
 (1.19) 

Here, electric field E is constant with respect to time then we get 

 B = 0 J (1.20) 

 Where B is the magnetic flux, J the current density and μ0 the permeability of magnetic 

flux. 

1.2.21   Hartmann number 

 It is expressed as 

 
0M B L






 (1.21) 

 Where, L the characteristic length of the geometry, σ electrical conductivity and μ the 

viscosity of fluid. It is a dimensionless quantity. 

 

1.2.22   Reynolds number  

 It is used to demonstrate whether fluid stream past a body or in a pipe is steady or turbulent. 

 It is also a dimensionless quantity and represented by Re   

i.e 

 Re
UL


 =

UL


  (1.22) 

where , L denotes the extent of the flow and U the free stream velocity of the flow. In other words 

, it is the quotient to the inertial force to viscous force. The flows in which Reynolds number is 

small are termed as laminar and the flows that occur at large Reynolds number are turbulent. 
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1.2.23 Knudsen number 

 It is expressed as the connection of the atomic mean free way length to a delegate physical 

length scale. It is denoted by the symbol Kn and it is a dimensionless quantity. 

 Kn
h


    (1.23) 

 Where, h is the characteristic physical length scale and. λ is the free path length. 

1.2.24 Eckert number   

 It is relation of the heat degeneracy potential to the advective transport. Being a 

dimensionless quantity it is used in Continuum Mechanics and defined as  

                                         𝐸𝑐   =   
𝑢2

∆𝑇 × 𝐶𝑝
 (1.24) 

Where, 

 T  is contrast between divider temperature and neighborhood temperature. 

 2u  is the neighborhood stream speed of the continuum, 

 pC is the constant-pressure local specific heat of the continuum, 

1.2.25 Prandtl number  

 The term defined as fraction of the viscous dispersion ratio to the thermic dispersion 

relation. It is denoted by Pr and it is a dimensionless number given by 

 

Pr

p

k
C


 




 

 (1.25) 

 Where  is thermal diffusivity, and  is a kinematics viscosity. 
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1.2.26 Thermal conductivity 

 Thermal conductivity (TC) is a proportion of its capacity to bearing heat. It is ordinarily 

signified by k, or    . The major eq for thermal conductivity is 

 q k T    (1.26) 

Where, T  is the heat grade, k is the TC and q is the heat flux  
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Chapter # 2 

Across Mass Transfer Phenomenon in MHD 

Flow with Slips Conditions 

2.1 Introduction 

 This part examines the AMT phenomenon impacts on a viscous fluid in which the lower 

plate is extending straightly. The process of AMT is presented by taking suction at the one sheet 

and infusion on the other all the while. The governing conditions for a 3D viscous incompressible 

stream are standardized with the assistance of similarity factors. An investigative arrangement is 

gotten for the nonlinear diff. eqs by utilizing HAM. The convergence of solution is analyzed 

quickly.  HAM is effective for the entire range of the included factors. Precision of the solution 

will be contrast with numerical technique. The result is discussed through charts and tables to look 

at the impacts of different parameters on skin friction coefficient and speed profile . This work is 

a concise review of an ongoing paper by[30]. 

 

 

 

 

 

 

 

 

 

  

Fig 2.1. Diagram of the stream formation 

 

 

 

 

  
2

v
by

z





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2.2 Statement of the problem  

 Consider a steady VIF streaming among two parallel permeable plates at distance h. The 

upper plate is arranged at z h , and the subordinate plate is situated at 0z  . The subordinate 

sheet is extending in two opposite ways at distinctive rates. For this situation the stream setup is 

3D just as three-directional. At low Re the impact of prompted MF can be ignored. The 

administering conditions are  

                                 
 𝜕𝑢

𝜕𝑥
 +  

𝜕𝑣

𝜕𝑦
 +   

𝜕𝑤

𝜕𝑧
 = 0                   (2.1) 

𝑢 
 𝜕𝑢

𝜕𝑥
 + 𝑣 

 𝜕𝑢

𝜕𝑦
 +   𝑤  

 𝜕𝑢

𝜕𝑧
 =  −

1

𝜌
  

 𝜕𝑝

𝜕𝑥
 +   𝜗 (

𝜕2 𝑢

𝜕 𝑥2
 +  

𝜕2 𝑢

𝜕 𝑦2
 +  

𝜕2 𝑢

𝜕 𝑧2
 ) −  

𝜎

𝜌
 𝛽0

2  𝑢                (2.2) 

𝑢 
 𝜕𝑣

𝜕𝑥
 + 𝑣 

 𝜕𝑣

𝜕𝑦
 +   𝑤  

 𝜕𝑣

𝜕𝑧
 =  −

1

𝜌
  

 𝜕𝑝

𝜕𝑦
 +   𝜗 (

𝜕2 𝑣

𝜕 𝑥2  +  
𝜕2 𝑣

𝜕 𝑦2  +  
𝜕2 𝑣

𝜕 𝑧2 ) −  
𝜎

𝜌
 𝛽0

2  𝑣        (2.3) 

𝑢 
 𝜕𝑤

𝜕𝑥
 + 𝑣 

 𝜕𝑤

𝜕𝑦
 +   𝑤  

 𝜕𝑤

𝜕𝑧
 =  −

1

𝜌
  

 𝜕𝑝

𝜕𝑧
 +   𝜗 (

𝜕2 𝑤

𝜕 𝑥2  +  
𝜕2 𝑤

𝜕 𝑦2  +  
𝜕2 𝑤

𝜕 𝑧2  )                                  (2.4) 

Applied to the boundary conditions given below 

     𝑧 = 0 ∶   𝑢 = 𝑎𝑥 +  𝜆1  
 𝜕𝑢

𝜕𝑧
 , v = 𝜆2  

 𝜕𝑣

𝜕𝑧
  ,    𝑤 = − 𝑤0                   (2.5) 

     𝑧 = ℎ ∶   𝑢 = 0 , v = 0 ,    𝑤 = − 𝑤1                                                                                                           (2.6)  

 Here ,u v  and w  are velocity constituents, p  the pressure, 1  is the slide extent alongside 

x-axis, 2  is the extent alongside y-axis, h  the distance between the walls of the channel, a  and b  

are stretching proportions towards x and y axis  respectively. The resulting dimensionless amounts 

are utilized for normalization:  

𝜂 =  
𝑧

ℎ
  , 𝑢 =  𝑎𝑥 𝐹′ (𝜂) , 𝑣 = 𝑎𝑦 𝐺′ (𝜂) , 𝑤 =  −𝑎ℎ (𝐹 + 𝐺)                                        (2.7) 

By using eq. (2.7) we obtained the coupled nonlinear diff eqs 

𝐹𝑖𝑣 −  𝑅𝑒 (𝑀2 𝐹′′ + 𝐹′ 𝐹′′ −   𝐹 𝐹′′′ −  𝐹′′ 𝐺′ − 𝐹′′′ 𝐺 ) =  0                                     (2.8) 

𝐺𝑖𝑣 −  𝑅𝑒 (𝑀2 𝐺′′ +  𝐺′ 𝐺′′ −   𝐹 𝐺′′′ −  𝐹′𝐺′′  − 𝐺′′′ 𝐺 ) =  0                                    (2.9) 

Together with given bound 

 𝐹′ (0) = 𝐾𝑛1 𝐹′′(0) + 1 ,   𝐺′ (0) =  𝐾𝑛2  𝐺
′′(0) +  𝛽  , 𝐺 (0) + 𝐹 (0) =  𝑤0  
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𝐹′ (1) =  0  ,   𝐺′ (1) =   0  , 𝐺 (1) + 𝐹 (1) =  𝑤1                                            (2.10) 

 Where /b a  is the proportion of velocity grades , 2Re /ah   symbolize the Re, 

 0 /M a    is the Hartmann number.   *

0 0 /w w ah   and   *

1 1 /w w ah  are clout and 

inoculation factors and  The skin friction constants are  

𝐶𝐹𝑥 =  
𝑇𝑥𝑧

𝜌 (𝑎𝑥2)
=  

1

𝑅𝑒𝑥
  𝐹′′(0) , 𝐶𝐺𝑦 =  

𝑇𝑦𝑧

𝜌 (𝑎𝑦2)
=  

1

𝑅𝑒𝑦
  𝐺′′(0)                            (2.11) 

And the total shear force on the surface is 

          
2 2 22

Re Re G'' 0 F'' 0y Fy x FxC C      (2.12) 

Here Re /x axh   and Re /y ayh   are local Reynold numbers. 

2.3 Analytic solution by HAM 

 The eqs (2.8) and (2.9) with bounds given in (2.10) is solved by HAM. We pick the 

accompanying preliminary predicts 

𝐹0 (𝜂) =  
1

2
  𝑤0 + ( 1 +  

2 𝐾𝑛1 

4 𝐾𝑛1 + 1 
(

3

2
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3

2
  𝑤0 −   2)) 𝜂

+ (  
1 

4 𝐾𝑛1 + 1 
(

3

2
  𝑤1 −  

3

2
  𝑤0 −   2)) 𝜂2  

+  (− 
1

3
−  

2 ( 𝐾𝑛1 + 1 )

4 𝐾𝑛1 + 1 
(

1

2
  𝑤1 −  

1

2
  𝑤0 −   

2

3
)) 𝜂3  

                                                                                                                                   (2.13) 

𝐺0 (𝜂) =  
1

2
  𝑤0 + ( 𝛽 +  

2 𝐾𝑛2 

4 𝐾𝑛2 + 1 
(

3

2
  𝑤1 −  

3

2
  𝑤0 −   2 𝛽)) 𝜂

+ (  
1 

4 𝐾𝑛2 + 1 
(

3

2
  𝑤1 −  

3

2
  𝑤0 −   2 𝛽)) 𝜂2  

+ (− 
𝛽

3
−  

2 ( 𝐾𝑛2 + 1 )

4 𝐾𝑛2 + 1 
(

1

2
  𝑤1 −  

1

2
  𝑤0 −   

2

3
 𝛽)) 𝜂3    (2.14) 
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And for linear operator we take  

 

4

4
L





  

2.3.1 Mth-Order deformation of HAM 

 We write the mth-order distortion eqs with given bound at 1m   as  

𝐿 [ 𝐹𝑚 (𝜂) − 𝜒𝑚 𝐹𝑚−1(𝜂) ] =  ∇1 𝑅1𝑚 (𝜂),       𝐿 [ 𝐺𝑚 (𝜂) − 𝜒𝑚 𝐺𝑚−1(𝜂) ] =  ∇2 𝑅2𝑚 (𝜂) , 

                                                                                                                          (2.15) 

𝐹′
𝑚 (0) =  𝐾𝑛1 𝐹′′

𝑚 (0) ,     𝐺′
𝑚 (0) =  𝐾𝑛2 𝐺′′

𝑚 (0) , 𝐺𝑚(0) +  𝐹𝑚(0) = 0  

                                                                                                               (2.16)    

        ' 1 F' 1 1 1 0,
mm m mG G F     

Where 

𝑅1𝑚 (𝜂) =  𝐹𝑖𝑣
𝑚−1 (𝜂) − 𝑅𝑒 ( 𝑀2 𝐹′′

𝑚−1 (𝜂)

+  ∑ 𝐹′
𝑚−1−𝑘 (𝜂) 𝐹′′

𝑘 (𝜂) −  𝐹𝑚−1−𝑘 (𝜂) 𝐹′′
𝑘 (𝜂) −   𝐺𝑚−1−𝑘(𝜂)  𝐹′′′

𝑘 (𝜂)

𝑚−1

𝑘=0

−   𝐺′
𝑚−1−𝑘 (𝜂) 𝐹′′

𝑘 (𝜂) )  

𝑅2𝑚 (𝜂) =  𝐺𝑖𝑣
𝑚−1 (𝜂) − 𝑅𝑒 ( 𝑀2 𝐺′′

𝑚−1 (𝜂)

+  ∑ 𝐺′
𝑚−1−𝑘 (𝜂) 𝐺′′

𝑘 (𝜂) −  𝐹𝑚−1−𝑘 (𝜂) 𝐺′′
𝑘 (𝜂) −  𝐺𝑚−1−𝑘(𝜂)  𝐺′′′

𝑘 (𝜂)

𝑚−1

𝑘=0

−   𝐹′
𝑚−1−𝑘 (𝜂) 𝐺′′

𝑘 (𝜂) )  

                                                                                                                           (2.17) 

 
0, 1,

1, 1,
m

k

k



 


  (2.18) 

The solutions of these eqs written as of unbounded sequence are  

𝐹 (𝜂) =  𝐹0 (𝜂) + ∑ 𝐹𝑚 (𝜂) ,        ∞
𝑚=1 𝐺 (𝜂) =  𝐺0 (𝜂) +  ∑ 𝐺𝑚 (𝜂) ,        ∞

𝑚=1 (2.19) 

Where   mF    and  mG    are the solutions of mth-order distortion eq (2.15) for 1m  . 
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2.3.2 Convergence of HAM 

 In the HAM, the cvg of the sequence solutions depends upon the cvg directing factors 1h  

and 2h . The accuracy of result is obtained by figuring the arrangements at various commands of 

estimation. It is perceived that the amendments to the solutions become slight after the 5th 

estimation. This displays the cvg of our result. 

 The precision of HAM result of eqs (2.8) and (2.9) is assessed through contrasts with 

numerical solution attained by the SM (table 2.1). 

Table 2.1: Effects of numerous constraints on the skin resistance constant  '' 0f  when Re 2  

                                       1 0Kn                                    1 1Kn                                 1 2Kn   

M  
0w  1w  HAM results HAM results HAM results 

0 0.5 0.5 -4.76606 -0.82106 -0.45070 

1.0 0.5 0.5 -5.01409 -0.82882 -0.45306 

3.0 0.5 0.5 -6.68011 -0.86734 -0.46443 

5.0 0.5 0.5 -9.10245 -0.89991 -0.47364 

0.5 0.5 0.5 -2.74718 -0.50387 -0.27790 

0.5 0 0.5 -4.82916 -0.82310 -0.45132 

0.5 0.5 0.5 -7.35873 -1.16144 -0.63315 

0.5 1.0 0.5 -14.06255 -1.89443 -1.02146 

0.5 2.0 0 -6.41152 -1.12348 -0.61871 

0.5 0.5 1.0 -3.04058 -0.50378 -0.27508 

0.5 0.5 2.0 1.16871 0.18374 0.09960 

   

2.4 Outcomes and Discussion 

 Figure 2.1 represents the influence of 1Kn  and 2Kn on the velocity, 'f  in the existence of 

AMT phenomenon. It is seen that the speed of the liquid adjacent the ST decreases as the Kn 

increases .The reason is the decrease in the force transport because of expansion of slide length. 

At no-slip condition ( 1 2 0Kn Kn  ), an opposite flow occurs owing to the skin resistance at the 

ST rises. But when the Knudsen number increases, this reverse flow disappears.  

 Fig 2.2 is drawing to observe the impact of AMT phenomenon under the SC. It is noted 

that fluid velocity increases as the injection velocity at the upper and suction velocity at the lower 
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sheet rises. This expansion in the speed profile results in the advancement of the viscous hindrance 

on the ST . Moreover, it is noticed in fig 2.3 that the viscid hindrance upturns significantly as 0w  

and 1w  increases with small values of the slip length, though, as the slip extent upturns, the 

augmentation in the hindrance control drops and wiped out after 1 2 1.5Kn Kn  . 

 As in given table  2.1  , to minimalize the viscid resistance, we see that for a fixed estimation 

of 0w  we can determine the value of 1w .  In order to get the result of expanding hydro attractive 

influence on the stream in the presence of SC fig 2.4 is given. The fig shows two variety drifts in 

the speed profile as the M  expands, the speed profile increments in the lower some portion of the 

channel ( 0 0.35  ) and drop out in the upper part of the channel i.e.( 0.35  ). Fig 2.5 clarifies 

the SS being a function of Kn for various values of M . As M upturns, the SS also rises which is a 

direct result of the expansion in the resistive power. As a result the total SS at the ST surges with 

growing Kn. This revenues that the Kn apply a substantial influence on the viscid slog in hydro 

magnetic flows in the occurrence of SC.  

 Fig 2.6 explains the effect of Re on the velocity contour. As Re  rises, the velocity reveals 

two variant behavior. The velocity contour declines as Re  upturns in the lower region of the duct 

while the contrary pattern is identified in the upper section of the channel. This habits of the speed 

profile is inferable from the developing inertial impact created by distending. Fig 2.7 establishes 

that the overall SS on the ST rises as the Re  rises. Since the extent of the wall skin resistance 

increments because of the developing distinction in the speeds of the mass of the liquid. At that 

point with aggregate slip parameter, the expansion in the viscid delay the ST is moderate down. 
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Figure2.1   Impact of Kn on the velocity in the existence of AMT phenomenon for M=0.5, 

Re=2,w0=w1=0.5, β=0.5,  

                                         Fig.2.1 

 

   

  

Figure 2.2 Impact of AMT procedure on the velocity when M=0.5, β =0.5 , Kn1=Kn2=0.5 and 

Re=2,  

                                    Fig.2.2 
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Figure 2.3  Impact of AMT sensation on the SS against the slide factors while β =M=0.5 

And Re=2  

                                    Fig.2.3 

 

 

 

 

Figure 2.4  Influence of the M on the velocity , while w0=w1=0.5 Re=2, β =0.5 and 

Kn1=Kn2=0.5, 

                                                         Fig.2.4 
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Figure 2.5  Consequence of parameter M on the SS against the slide factors while β 

=w0=w1=0.5 and Re=2   

                                                             Fig.2.5 

 

 

Figure 2.6  Cause of Re on the velocity for w0=w1=0.5 

and Kn1=Kn2=M=0.5 

                                            Fig.2.6 
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Figure 2.7   Consequence of Re on the SS against the SC while w0=w1=0.5 and M= β =0.5 

                                                                  Fig.2.7 
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2.5 Conclusion  

 From above analysis we have examined the impact of SC in MHD stream over an ST inside 

a duct within the sight of AMT phenomenon. The HAM is utilized to discover the investigative 

arrangements of exceedingly nonlinear diff. eqs. The HAM arrangement is likewise contrasted and 

the numerical arrangement by a SM and a decent assertion among the strategies has been 

established. It is presumed that the AMT phenomenon within the sight of SC is increasingly useful 

in diminishing and adjusting the viscid slog over the ST. Indeed, even within the sight of 

magnetism the viscid drag on the ST can be diminished by expanding the Kn. Thus the Kn is in 

opposite relation with velocity.  
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Chapter#3 

Calculation of Temperature Distribution for 

Viscous Incompressible Flow with Constant 

Thermal Conductivity 

3.1 Introduction 

 In our analysis we calculate the temperature conveyance in the presence of thermal 

conductivity with given bounds. The effects of a few parameters on temperature profile are 

investigated and pondered graphically. We present an absolutely analytic and exceptionally precise 

answer for the administering nonlinear eqs . We have utilized the HAM to explain the nonlinear 

eqs and looked at these outcomes by a numerical plan. HAM has incredible potential of dealing 

with exceptionally nonlinear eqs . Some commitments can be found in [2] and [28]. 

3.2 Mathematical Formulation of the Problem 

 We deliberate a VIF constrained by two unbounded corresponding even plates situated at 

0z  and z h  .It is presumed that lower plate is warmed at steady temperature 0T  and the upper 

plate is stable at temperature hT  s.t 0 hT T . For this situation, the principal system contains the 

M. eqs as [30] and the E.eqs set by 

2 2 22 2 22 2 2

2 2 2
2

p p

T T T k T T T u v u w v w u v w
u v w

x y z C x y z C y x z x z y x y z





                            
                                                         

    

  (3.1) 

 

With the appropriate bounds 

 at  0z      0T T     and   hT T  at z h , (3.2) 
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where   is the viscosity and k  the thermic diffusivity of the liquid, ,x y  and z  are space variables 

, pC  for the specific heat , Moreover ,u v  and w  are velocity constituents, h  for the width of the 

channel, hT  is the temperature at upper wall and 0T  the temperature at lower wall. We denote the 

similarity conversion as    

 ,
z

h
     ' ,u axF     ' ,v ayG      ,w ah F G    (3.3) 

And  
0

,h

h

T T

T T
 





  

From (3.2) and (3.3) we take 
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x





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2
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x





,  0

T

y





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2
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0

T

y





, (3.4) 
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 
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
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
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v
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y







 (3.6) 

Substituting values from (3.4) to (3.6) into (3.1) 

     
2 2 2 2

2 2 2 2 2 2 20
0 2 2 2

(F G) ' '' F'' G'' ( ) 2 2 F' ( ) 2a G' ( ) 2a F'( )G'( )h
h

p p

T Tk a x a y
T T a

a C h aC h h


       



   
           

    
   

  (3.7) 
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   (3.8)      
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 
2

2 2 2 2'' (F ) ' F'' G'' ( ) 4 Re F' ( ) ' ( ) '( )G'( ) 0
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a C h C
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  (3.9) 

  
2

2 2 2 2'' (F( ) ( )) ' F'' G'' ( ) 4 Re F' ( ) ' ( ) '( )G'( ) 0
p

x y

C ah
G Ec Ec Ec G F

k


         



 
          

 
     

  (3.10) 

After that we have the following 

    2 2 2 2'' Pr Re ' 4 Re F' ' 'G' F'' G''x yF G T Ec G F Ec Ec        
 

 (3.11) 

With transformed boundary condition 

  0 1,           1 0,   (3.12) 

here Pr /pC k is the Prandtl number, '  symbolizes the diversity with respect to  , 2Re /ah   

is the Reynolds number,  0/c p wE a C T T   for Eckert number,  2 2

0/x p wEc a x C T T   and 

 2 2

0/y p wEc a y C T T   are the local Eckert numbers, respectively. Now we focus on the HTP. 

Thus the eqs and the given bounds for the elaborated velocity components have not been given 

here so as to make the composition reduced.  

3.3 Analytic HAM Solution 

 So as to get the temperature profile we will need to understand the fundamental scheme. 

We utilize HAM to resolve this scheme of nonlinear eqs. Furthermore, the essential estimate 

approximations fulfilling the eq 3.12 as following 

  0 1 ,     (3.13) 

In perspective on boundary conditions 3.12, we take the linear operator as 

 

2

2T

d
L

d


 (3.14) 
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 Since HAM is notable and is broadly utilized by the network of fluid dynamics , 

temperature and mass exchange.  

3.3.1 Mth- Order Distortion 

 Mth order distortion eq  1m   is given by 

 
     1T m m m mL T T hH        (3.15) 

Insert to the bounds given below 

  0 1,mT      1 0,mT   (3.16) 
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  (3.17) 

And 

 
0, 1,

1, 1,
k

k

k



 


  (3.18) 

Where  mT   is the result of the mth order  1m   distortion eq. 

3.3.2 Convergence of HAM Solution 

 As referenced by, the cvg of HAM series intensely be influenced by the value of the cvg 

controlling parameters, namely, h .In HAM results the higher order of estimations are the 

amendments to these results, and for a congregating sequences the modifications must lie in a 

collective order of calculations. We also deliberated such type of modifications (see table 3.1) for 

the existing problem. From table 3.1 obviously the revisions to the HAM arrangement become 

immaterial at high number of calculations. This verifies the cvg of HAM result. 
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Table 3.1 Convergence of HAM when h=-0.8, pr=0.71, 0.2x yEc Ec Ec   are reserved fixed. 

Re                  0 1w w                 '' 0f                                       ' 0T  

1 0.5 0.5 -0.811861 -0.846939 

2 0.5 0.5 -0.823103 -0.696192 

3 0.5 0.5 -0.833653 -0.567555 

2 1 0.5 -0.823296 -0.705960 

2 2 0.5 -0.823676 -0.750082 

2 0.5 -0.5 -0.785078 -1.40192 

2 0.5 0.0 -0.804118 -1.00764 

 

3.4 Numerical outcomes and discussions 

 So as to research the impact of temperature distribution with constant thermal conductivity, 

graphs are plotted in figures 3.1-3.11.We have plotted the temperature profile for various factors 

and observed the behavior by varying the values of those factors.  Fig 3.1 shows the temperature 

distribution at different values of 1w  by keeping Ec zero i.e. ( 0x yEc Ec Ec   ), as the values of 

1w rises, the temperature distribution also increases. Fig 3.2-3.4 are intrigued to observe the 

impacts of the congregating value of temperature by varying Ec. It is seen that as the Ec increases, 

the temperature profile decreases. Fig 3.5 illustrates the influence of velocity gradients b
a

   on 

temperature. It is noticed that when we vary the values of   from low to high, the temperature 

also rises. This indicates the direct relation with temperature. In fig 3.6 and 3.7, it is perceived that 

the consequence of Kn1 and Kn2 on  T  .It is detected that the temperature of the fluid increases 

as the Kn increases. Fig 3.8 shows that in the case of SC the influence of growing hydro- magnetic 

force on the flow. The fig demonstrates the variation trend in the temperature profile.. As M 

increases, the temperature profile increases from top to bottom . As M increase the SS also increase 

which is because of the increase in the resistive force to the flow. Fig 3.9 describes the behavior 

of temperature by varying Pr. If Pr increases the temperature decreases. For small Prandtl 

number, Pr << 1, means the thermal diffusivity dominates. For large, Pr >> 1, depict that the 

magnetic diffusivity leads the behavior. However the graphic values are converging .In fig 3.11 it 

is observed that increase in injection velocity at the upper portion and suction velocity at the lower 

portion results an increase in the viscous hindrance on the ST. It is perceived that this viscous 
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hindrance can be decreased by raising the value of Kn. The resulting temperature values are 

congregating by showing increasing pattern with an increase in the value of w0. 
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   Figure 3.1    temperature at different w1 when w0=β=Kn1=Kn2=1/2, Pr=71/100, Re=2 

                                                              Fig. 3.1   

 

Figure 3.2 Impact of Eckert number on temperature at w0=w1=0 ,β=Kn1=Kn2=1/2, 

Re=2,Pr=71/100,                                  Fig .3.2                  
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Figure 3.3        Impact of local Ec on temperature profile Re=2,Pr=71/100,β=w0=w1=1/2 

                                                                          Fig .3.3 

 

                                    Figure 3.4   Effect of  local Eckert number on Temperature, 

Re=2,Pr=71/100,β=w0=w1=1/2 

                                                                      Fig .3.4 
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                                          Figure 3.5 Influence of β on temperature 

Re=2.Pr=71/100,w0=w1=1/2 

                                                                Fig .3.5                                                                             

 

              Figure 3.6 Consequence of Kn  on temperature profile 

Re=2,Pr=71/100,ex=ey=ec=1/5,w0=w1=1/2 

                                                                            Fig.3.6    
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                  Figure 3.7   Consequence of Kn on temperature ,w0=w1=β=1/2,Re=2,Pr=71/100 

                                                                             Fig.3.7    

 

                        Figure 3.8  Influence of M on temperature ,Re=2,Pr=71/100,β=w0=w1=1/2, 

ex=ey=ec=1/5     

                                                                           Fig.3.8                                                                                                 
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       Figure 3.9    Influence of Pr on temperature ,Re=2,β=w0=w1=Kn1=Kn2=1/2, 

                                                                                  Fig.3.9 

 

Figure 3.10 Temperature at different values of Re ,Pr=71/100,w0=w1=β=1/2 

                                                                               Fig.3.10 
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        Figure3. 11 Temperature at different w0, Re=2,Pr=71/100 Kn1=Kn2= β =ec=ex= ey=1/2 

                                                                                  Fig.3.11 
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3.5 Conclusion 

 We have inspected temperature distribution with constant thermal conductivity inside a 

channel .Behavior of temperature profile is noticed by changing different constraints .The HAM 

is used to find the analytical solution of exceedingly nonlinear diff. eq. Because of the elasticity of 

HAM in free choice for the variety of constraint values, it is detected that this method was 

appropriate and high precision method for resolving non-linear diff.eqs. . Reasonable clarifications 

are taken by utilizing graphs demonstrating the behavior of parameters. Also it is deduced that 

Knudsen number is in direct relation with temperature. 
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