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Abstract

In control theory, when controllers are designed it is assumed that there exists

a value of controller effort than can stabilize the system and additionally, the

reference can be tracked. If on the other hand, the plant model of the system is

unstable, or if it has modeling errors, the controller effort needs to be unbounded.

Physically speaking every controller needs to be realized using analog hardware or

using digital hardware. The output terminals of the controller cannot drive a signal

having boundless magnitude. For instance, if the controllers are implemented using

operational amplifier, the output of the amplifier is always bounded by the DC

supply voltages. If the supply voltage is Vs volts, then the maximum signal that

can be driven by the amplifier without getting into saturation would be in the

range L− ∼ L+.

The solution of the issue is presented by quasilinear controller theory. To demon-

strate the issue, three controllers for magnetic levitation system (MLS) are de-

signed in this work. First controller is designed using loop-shaping methods. As

the MLS is highly non-linear, so its linearized model can frequently and abruptly

actuate saturation non-linearity. It is shown, the systems transient performance,

steady state performance and the disturbance rejection is exactly what is required.

But the controller effort signal reaches a value of 50 plus units in tracking the

unit step reference. Second controller has been designed using active disturbance

rejection control (ADRC) theory. The ADRC controller performs better than

loop-shaping controller, in terms of transient specifications, steady state specifica-

tions and disturbance rejection. Also, this controller does not need accurate plant

model, so it does counteract modeling errors more effectively than loop-shaping

control. But this controller has exhibited huge controller effort to do the perfect

job. Third controller (which is the proposed solution) is designed using quasilin-

ear control theory (QLC). It is shown that this controller not only satisfies the

performance specifications, but the magnitude of controller efforts remains within

the bounds. And it never actuates the saturation non-linearity. . . .



Chapter 1

Introduction

The theory of control systems has evolved to revolutionize the human comfort.

Quasilinear control theory is the recent addition in this field. In this theory the

availability of linear plant is assumed and non-linear instrumentation is designed

for the smooth operation of closed loop system. This chapter presents the intro-

duction of proposed research work. As this work is based on Quasilinear Control

(QLC) theory, literature review follows the introduction and is followed by mo-

tivational remarks. The chapter will end with the problem statement and the

objectives of this work.

1.1 Overview

Control systems is the study of designing controller so that the complete control

system serves according as the defined objectives. The controllers can be classified

according to the domain they work in, according as the way they perform their

jobs. The controller could be discrete or continuous. Primarily all controllers are

designed in continuous domain. With the advent of innovative and sophisticated

digital technologies, controllers are tried to be implemented digitally. But, unfor-

tunately, every controller cannot be digitized. Conversely, every controller cannot

be implemented using analog technologies.

Controllers can be categorized as classical controllers, non-classical controllers and

hybrid controllers. PID controllers, loop-shaping controllers and lead-lag con-

trollers are the examples of Classical controllers. Classical controllers are designed

and are based on intricate mathematical tools. The design of these controllers is

claimed to be of deterministic nature. But, when these controllers are designed,

the conflict between number of unknown parameters and the number of equations

occur. To overcome these conflicts experienced designers do assume the values of

1
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some parameters and if the satisfactory performance is not attained, the design

process is repeated again and again. To facilitate the design process, some help

from modern mathematical tools is obtained such as state-space analysis, optimal

control and H-infinity loop shaping etc. feedback controllers and observer-based

feedback controllers are also classified as classical by some authors.

Adaptive control is the control strategy taken by a controller which must adapt

to a controlled system with parameters which vary, or are initially uncertain. For

example, as an aircraft flies, its mass will slowly decrease as a result of fuel con-

sumption; a control law is needed that adapts itself to such changing conditions.

Adaptive control is different from robust control in that it does not need a priori

information about the bounds on these uncertain or time-varying parameters. Ro-

bust control guarantees that if the changes are within given bounds the control law

needs not be changed, while adaptive control is concerned with control law chang-

ing themselves. Adaptive control has emerged from classical control theories and

the availability of high-end computational tools, it looks that it has become inde-

pendent from those theories[4]. PID control, although it is said to classical control,

do have the capability to adapt with varying control system requirements. Neural

networks and fuzzy logic are easing the process of creating adaptive controllers.

Artificial intelligence and machines are the recent actors in this area.

Hybrid controllers are the controllers which combine both classical and non-classical

theories to ease control system design and help embed adaptiveness. If artificial

neural networks, fuzzy logic, ANFIS (Adaptive Network-based Fuzzy Inference

System) which the combination of neural network and fuzzy logic; and others are

used as controllers in their intrinsic sense, this would be modern and non-classical

control. PID controller due to its inherent structure is the best controller amongst

its contemporary controller and still it is the dominating controller in industrial

applications. But, PID gains once designed cannot be changed online. The use of

fuzzy logic and neural network has made it possible that its parameters could be

varied while it is there in the process loop. As this is the combination of classical

and non-classical control, this would be called hybrid control. A number of such

example can be found in literature. Some examples of this conjunction will be

presented in literature review.

While designing the controller, it is assumed that controller can apply infinitely

huge effort to reduce control error. Such an effort is dictated by uncertain changes

in reference input, disturbances and measurement noise. As these inputs cannot

be avoided in any circumstances, so to track the reference successfully, controller

might need to apply large effort. The amount of effort is constrained by the
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practical implementations. For instance, analog controllers are implemented using

operational amplifiers. The peak output values are determined and are restricted

by the supply voltages. For smooth operation of the system, it is required that

maximum output must stay below the supply voltage, otherwise the controller

will be saturated. Similar situation might occur in pneumatic systems, where

controllers are implemented using pneumatic components. The movement of the

valve is actuated by the controller. If the controller applies sudden and huge effort,

the actuator might get stuck. This type of situation is called actuator saturation.

This phenomenon of saturation is called non-linearity. For the smooth operation

of control systems, these kinds of non-linearities and others like, backlash, relaying

etc. must be avoided. Back-stepping control is one of the methods which can be

used to avoid saturation particularly. But there is a need of some method which

could universally be used in such situations as pointed above.

The methods used to non-linear systems are Jacobin linearization, compensation

of static nonlinearity, linearization by local feedback, input-to-state linearization,

input-to-output linearization, Lyapunov redesign, backstepping, sliding mode con-

trol, gain scheduling, relay control etc. [25]. Each method is based on the assump-

tion that the plant model is nonlinear. But none of them considers the actuator

linearities explicitly. Backstepping control is considered to be interacting on such

kind of nonlinearities indirectly by backstepping estimated ?virtual control input?.

Because it has superior characteristics to its contemporary methods, its numer-

ous applications can be found in literature. For example in non-holonomic robots

references might actuator non-linearity while tracking the referenced tracking, so-

lution has been proposed using backstepping [10]. In [9] it has been applied on

lateral behavior control of a vehicle, [44] applies to a cluster of vehicles for coor-

dinated flow in a defined field and [30] considers and use of backstepping for the

flight behavior control.

But it poses certain difficulties. Firstly, the backstepping design is based on Lya-

punov function for the estimation of virtual control inputs, so it will not easier

and or it could even be impossible to find a suitable Lyapunov function. Secondly,

it need that all states of the system must be measurable, if this is not possible,

they must be observable from the measurement of output. The estimation of states

from the output often need a nonlinear observer, which is again a challenging task.

Lastly, the design is sensitive to parameter perturbations [25]. The solution lies in

Linearized (or linear) Plant and Non-Linear Instrumentation (LPNI). This can be

differentiated from the above mentioned in the sense that Linear Instrumentations

(controllers in the wider) are designed for the Non-linear Plants, so this could be
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called as Non-linear Plant Linear Instrumentation (NPLI) just to give a broader

comparison with the work presented in this report.

1.2 Literature Review

Initially, the QLC theory has been presented for the linear and stable plants under

the assumptions that some inputs might ignite non-linearities like saturation. In

this work, it has been demonstrated that QLC controller can control the unstable

plants as well without exciting non-linearities, even better that loop-shaping con-

trol and ADRC (Active Disturbance Rejection Control). So in this some section

glimpses from past work in loop shaping, ADRC and in QLC will be presented.

1.2.1 Loop-Shaping Control

There are three ways of representing the frequency response analysis: 1) polar

plots; also known as Nyquist plot; is the plot of complex numbers (in polar form) in

complex plane when frequency is varied, 2) Bode Plot, is the plot of log-magnitude

versus frequency and phase (in degree) versus frequency onto two separate dia-

grams and 3) Log-magnitude versus phase plot, is the plot of log-magnitude (on

y-axis) versus phase on (x-axis) when the frequency is varied. The characteristics

of all frequencies analysis methods are similar and depend upon the loop transfer

function L(s) = GP (s)GC(s). So the loop shaping control is the art of manip-

ulating L(s) so that desired frequency response characteristics are obtained [6],

[38].

The controller GC(s) could be a lead compensator, a lag compensator or lead-

lag compensator. Looping shaping is concerned with choosing the right set of

controller parameters, so that the specified goal is achieved. Since this is the

oldest control methods, so almost all modern mathematical techniques have been

employed to optimize the design [36]. A classic, compact and in-depth account

of loop-shaping control can be found in [23], beginning from simple concepts to

H-Infinity control and modern optimization methods.

The basic theme of loop shaping has found un-numerable applications. Tran-

scutaneous Energy Transfer is the way of wireless energy transfer, and is best

controlled by shaping various loops [24]. As mentioned earlier many intricate

mathematical methods have been used to design loops for given conditions includ-

ing AI [45]. Another stunning extension of loop-shaping is the incorporation of

the concept of signal-to-noise ratio (SNR). This extension has resulted the defi-

nition of reference-to-disturbance ratio (RDR), directs the loop-shaping to attain
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high RDR [2]. Iterative learning control is another extension of loop-shaping con-

trol [61]. Buck regulators are the power converters which step down the input

DC power to desired level. The models of these converters are inherently non-

linear, but their linearized versions are used to design controllers. One useful

form of the buck converter is the dual output converter. It has two loops to be

shaped, and convex optimization has done the job [14]. As the power converters

are inherently non-linear, so their linearized models are used for controller design.

Another redesigned loop-shaping control with FOPID (Fractional-Order-PID) us-

ing H2/H-Infinity optimization has obtained. This core of this design is based

upon frequency response shaping, so this is an excellent example of spells of loop

shaping [13]. The crossed loops in a networked control systems are sometimes re-

ferred to as butterfly loops. Design of these loops towards specified requirements

is also called loop-shaping [39]. Loop-shaping design also provides robust designs,

such an example is the wind-turbine power conversion system. Here robustness is

the key design parameter due to stochastic nature of input power [26].

In summary, it can be said that loop shaping is a control system design methods

based upon shaping the loop transfer function. More precisely, a loop transfer

function consists of plant, actuator and sensor controller transfer functions. It

is assumed that all transfer functions are known except the controller transfer

function. So the task of loop shaping is to determine the controller parameters,

such the bode plot or Nyquist plot get the desired shape. This can be accomplished

using any linear or non-linear optimization.

1.2.2 Active Disturbance Control

Although exact time of birth of PID control cannot be traced, yet it is believed

that it development and extensive deployment commenced in the era of 1920s to

1940s. This age can be said to age of peak renascence and was mostly forced by

World War I and WORLD War II. It played vital role in the industrialization of

many countries in the post war era specifically. Since then it is ruler of industry

and has attracted overwhelming response from the control designers. Its amazingly

simple and its simple actions do amazing control actions. But, at the same time

the tuning of its parameters demands the highest level of skills. So its simplicity

seems to loose attention. But, it?s not the case now-a-days with the development of

amazing computational resources. Despite its beauty of simplicity, the popularity

of analog controllers is becoming in the era of digital controllers, because they

cannot take full advantage of digital revolution [29]. To retain the existence of

such a hugely successful controller until now, it is aided with modern methods

of soft computing like fuzzy logic, neural networks. Conversely, modern control
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techniques are strengthened with PID mechanisms. But there is a need of some

paradigm shift that does not alter its basic structure, but enhances its control

capability. If such an effort is not put-forth, this can disappear in the modern

digital world due to their hugely beneficial methods of digital control. Now the

question arise, what kind of control can replace PID, the answer is ADRC (Active

Disturbance Rejection Control). The justification to this choice will be clarified

in the upcoming lines.

The new replacement to PID, has actually strengthened the use of PID. It has

been brought-forth from some of the shortcomings of PID control. There FOUR

basic drawbacks in the PID control lead to the development of ADRC. This new

paradigm shift is based on the developing (1) an almost smoother transient re-

sponse with the help of a simple differential equation (2) the design of noise-

tolerant differentiator and (3) the powerful nonlinear feedback. This revolution-

ary was proposed firstly in Chinese language and in Chinese technical literature.

Whose English version was also drafted by the original author. It is perhaps the

first official and formal document in which the framework of ADRC has been

proposed for the English readers. A survey of literature also reveals that so far

Chinese researchers are dominating this particular control scheme [29].

Complete and comprehensive ADRC framework consists of four individual compo-

nents: de-effector to set-point jumps, tracking differentiator, non-linear feedback

and total disturbance estimator [29]. The development of extended state observer

(ESO) has attracted the most attention of researchers. Particularly, linear version

of this work is being used extensively. In linear version set-point jumps are reme-

died with linear ESO and PID serves the purpose of controller [31]. There was

no explicit mention of the stability conditions for ADRC control. As ADRC is a

kind of non-linear control, so its stability conditions have been developed using

Lyapunov describing function, which uses circle criteria on the Lauri system (the

plant transformed to Laurie system) [42]. In another work output feedback stabil-

ity is described with the details on design non-linear ESO [42]. Some significant

works has been undertaken to make ADRC adaptive, so that the overall system

could be made adaptive. This notion has been employed in the design process

of adaptive ESO to overcome nonlinearities and stochastic disturbances [59], [33]

and [50]. Frequency methods have been applied on ADRC in [57] using describing

function.

A number ADRC applications have been reported in literature. In [8] ADRC

is applied for the efficient energy storage of flywheel technology. [60] gives the

application of ADRC to control the position of magnetic and rodless pneumatic
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cylinder. In [58] a novelty has been brought forth in the design of ESO. The study

concerning the problem of aperiodic-disturbance estimation and rejection in a

modified repetitive-control system (MRCS) with an equivalent-input-disturbance

(EID) estimator is presented in [62]. A MIMO application of ADRC has been

explored in [51]. In [32] new dimension of ADRC have been explored toward its

discrete implementation considering bump-less transfer and rate limitations. The

aspects of robustness of ADRC have been pointed out in [55]. In this article [41],

robust ADRC has been applied for speed control capability of induction motors

drives. The article [7] combines the robustness and adaptiveness features of ADRC.

The research work in [34] presents the application of ADRC for the control PWM

rectifiers. The rectifiers in turn are being used to control the speed of sensor-less

motor. [56] give the application of ADRC for trajectory control in aircrafts.

1.2.3 Quasilinear Control Theory

If the relationship between input variable(s) and output variable(s) of a system is

linear without any bounds or restrictions on the variables, this is known a linear

system. But if the linearity between the variables is bounded by the system within

defined limits, the system is called Quasilinear [49]. The term quasilinear has been

used extensively for the characterization of PDE (Partial Differential Equation)

systems. The systems described by PDEs are classified as linear, quasilinear and

non-linear. QLC theory deals with the systems described by quasilinear ODEs.

As the systems variables are bounded by quasi-linearity, violations of these bounds

might result in non-linear phenomena such as shocks, steepening, and breaking of

responses within the system [28].

The concept of quasi-linearity has many dimensions. This notion with a broader

perspective has been utilized to describe the phenomena in quantum mechanics

and quantum control under Hilbert space [54]. Quasi-linearity has also been iden-

tified and formulated in quadratic and hyperbolic PDE systems. The obtainment

of flatness in the solution of such systems is the consequence of quasi-linearity

[35]. As quasi-linearity is a way of characterizing of PDE system, backstepping

control has been implemented on a two-by-two hyperbolic quasilinear system. It

should be noted that here QLC is not a controller design method [53]. Quasilinear

PDE are also used for description of distributed parameters systems (commonly

known as distributed systems). In one research direct parametric control has been

on such systems. In another work the method of varying delays has employed on

such system [18], [17]. C.K. Li et. el have used quasilinear modeling for power

converters, while they have used conventional and contemporary methods for the
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control of power flow [40]. Optimal can also be implemented on quasilinear sys-

tems [43] In one of his research, Guang-Ren Duan applies output feedback control

to a system modeled using quasilinear system [19]. Relay control applied to in-

dustrial motors modeled by QPDE is another example quasilinear modeling. Here

parametric control has been utilized to simulate smooth relay control [16].

All references cited in the above paragraph employ quasi-linearity as a system

modeling tool. But, now it has evolved into a control method which deals with

kinds of non-linearities explicitly. It is pointed out that in all the above stated

examples non-linearities has not been dealt with exclusively, although some control

methods, such as backstepping control, provide implicit counteraction.

The quasilinear control theory of the day provides a smart combination of classical

control and quasi-linearity. This QLC is based on the assumptions

• that the input signals (reference, disturbance or noise) are of probabilistic

nature. These exogenous signals can activate non-linearities

• that the plant is linear (or its linearized model is available), but due proba-

bilistic inputs system instrumentations can be trapped into non-linear phe-

nomenon. [this assumption is called Linear Plant Non-Linear Instrumenta-

tion (LPNI) in literature]

• that the non-linear phenomenon could be inherent in the instrument beyond

certain bounds

For the above said assumption, QLC (Quasilinear control) theory presents the

methods of controller and reference design, so that non-linearities are never acti-

vated [11], [47]. Following two shortcomings can be identified in this theory so far

[11]:

• This theory assumes that plant, controller in their individual sense and the

closed-loop system must be stable

• It enforces an upper bound on the magnitude of reference to be tracked for

any closed-loop system.

Although, the aforementioned things limit the use this theory. But there are two

big advantages in this use of this theory [11]:

• The control designer can know the exact value of upper bound on the refer-

ence to be tracked. Thus it gives deeper insights into the plant shortcomings.
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• It helps the design of such controller that will never cause the plant get

into non-linearity. This is the biggest achievement of this theory towards

implementation perspectives.

Non-linearities can be divided into two big classes: symmetric non-linearities and

asymmetric non-linearities. QLC theory has been developed to counteract both

kinds of non-linearities [47].

Considerable amount of applications has been designed using this theory. Perhaps

the first major application of this theory is in the controllers that would regulate

the power output from a wind turbine [47] [27]. Design of controllers using state-

space analysis is becoming more and more popular. There are certain reasons to

this rapid growth: state-space analysis gives deeper look into the system?s behav-

ior; it gives direct control to accessible states of the system. These notions have

been extended in QLC theory for the development of Eigen-structure assignment

for the non-linear systems [20].

This work will comparison of three control methods loop-shaping control (the

classical control), ADRC (Active Disturbance Rejection Control) and Quasilinear

control. Loop shaping theory will be presented in second chapter and third chapter

will elaborate of use of ADRC. Last and fourth chapter will present quasilinear for

the problem at hand. So rest of the material will be referenced in their respective

places accordingly.

1.3 Motivation

Jacobian linearization of Taylor series linearization has not work well for highly

non-linear systems. Although linearization brings easiness in the design process,

but attainment of particular objectives often remains unsuccessful. The process of

designing linear controller for linearized plant might be called Linear-Plant-Linear-

Instrumentation strategy. To over this difficulty, some other methods like [25]

input-state linearization, input-output linearization, feedback linearization were

proposed. These methods do not counteract the non-linearities in a direct action

sense firstly, and secondly, they do poses one more shortcomings like the acces-

sibility of system states and unsuitability of physical implementations. These

difficulties have effectively been overcome by quasilinear control.

Consider the system shown in FIGURE 1.1. r(t) is the reference input to tracked

by the system, y(t) is the output from the system, d(t) is the disturbance in-

put, GC(s) and GP (s) are the linear controller and linear plant respectively. The

function f(.) is the actuator function and g(.) is the sensor function.
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ua(t) = f(u(t)) (1.1a)

b(t) = g(y(t)) (1.1b)

The saturation nonlinearity is ubiquitously exhibited by actuators and the sensors

are often trapped by other nonlinearities like dead zone, hysteresis and friction etc.

The function f is actuator is characterizing the actuator nonlinear phenomenon,

while the function g is presenting the nonlinear phenomenon of sensors. Given

such situation, [12] theory of quasilinear control can aid the control designer with

the followings

Figure 1.1: Quasilinear Control System

L1-Calculating Performance Parameters: Given system specificationsGC(s),

GP (s), f(u(t)), g(y(t)), Quasilinear Control (QLC) can be used to find perfor-

mance parameters of the system. The performance parameters of QLC theory

are not different than classical control theory. Like classical theory the perfor-

mance parameters of QLC are percentage overshoot, rise times, settling time, gain

margin, phase margin, disturbance rejection and reference tracking.

L2-Controller Design in Narrow Sense: Given the system particulars GP (s),

f(u(t)) and g(y(t)), QLC theory aids the design of controller GC(s) so that over-

all specified system performance (time domain performance or frequency domain

performance or both) is achieved.

L3-Controller Design in Wide Sense: This implies that given the GP (s), its

controller GC(s) and its instrumentations f(u), g(y) can also be designed in a way

that the overall LPNI meets the performance specifications.

L4-Partial Recovery of Performance: Assuming that actuator and sensor

are linear and a controller Gpr(s) is designed which satisfies the linear system
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performance. QLC allows that a suitable actuator and/or sensor are chosen, so

that given specifications are adequately met. Such situations can arise for large

scale systems.

L5-Complete Recovery of Performance: If possible QLC also allows the

redesign of Gpr(s) so the closed loop LPNI meets the performance specifications

completely. Usually, in this approach, only one parameter of the controllers is

redesigned. The process could be repeated for some other parameter so that

performance specifications are satisfied.

The QLC approach is based on stochastic linearization. Two distinct features of

stochastic linearization. Firstly, the non-linear actuator and sensor functions can

be replaced by constant gain which are proportional to the statistical expectation

of u(t) and secondly, as the gains are calculated using past statistics of u(t), so

the unusual behavior of the system can be predicted and timely action from the

controllers are induced with saturating the controller or actuator itself.

Magnetic levitation system is a highly nonlinear system. If the linear model of

this plant is perturbed slightly out of the specified bounds, drastic and undesired

behavior is observed if with the best linear controller. The design QLC is moti-

vated by the excellent features of QLC theory for highly nonlinear system such as

magnetic levitation system.

1.4 Problem Statement

Magnetic levitation systems (MLS) are being employed for the development of

swift trains. This is the reason that it has attracted the attention of many re-

searchers. Magnetic levitation system (MLS) is a highly nonlinear plant, so its

control needs careful and robust controller design.The reference [21] presents the

design IMC based PID controller, while [46] gives performance comparison of Jaco-

bian linearization, feedback linearization and sliding mode control for MLS control.

A model of MLS is shown in FIGURE 1.2. The dynamics this MLS model can be

given by [21]

m
d2h(t)

dt
= mg + fem(h, i, t) (1.2)

All terms in (1.2) are self-explanatory. But for formal completeness, all terms in

the equations are explained. In (1.2) m is the mass of the ball r is the reference

position of the ball and y is the actual position of the ball read by the sensor. The

variable u is the output from controller which is converted to current by current

driver, because the electromagnet is controlled by the changing current. From

(1.2) it can be noted it is a relationship between the relative position of the ball
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Figure 1.2: Magnetic Levitation System

and the current flowing into the electromagnet. Also the relationship is highly

nonlinear because the electromagnetic force fem(h, i, t) is given by [21]

fem(h, i, t) = −C
(
i(t)

h(t)

)2

(1.3)

From (1.2) and (1.3)

m
d2h(t)

dt
= mg − C

(
i(t)

h(t)

)2

(1.4)

The constant C is considered to be constant, but it is not, because its dependent

upon the levitation point. In this work quasilinear control of MLS will be presented

and will be compared with some of the existing methods.

So, the problem statement of this work becomes: Given the relationship (1.4)

• Linearize (1.4) at suitable levitation point

• Find a suitable current driver, so the voltage from the controller shown in

FIGURE 1.2 could be converted to current to drive the electromagnet.

• Design Loop-Shaping based PID controller for the linearized plant

• Design the ADRC (Active Disturbance Rejection Controller) for the lin-

earized and nonlinear plant

• Apply the QLC problem L3 on the system to obtain the quasilinear controller
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• Finally, compare the performances of all control techniques mentioned above.

1.5 Research Objectives

Based on the problem statement, followings are the objectives.

� PID design for Magnetic Levitation Systems using Loop-Shaping Control

� Design of Active Disturbance Rejection Control (ADRC) for MLS plant

� Design of Quasilinear Controller (QLC) for MLS Plant

1.6 Outline of the Thesis

This thesis report will consist of FIVE chapters. First chapter has presented the in

depth introduction to the work at hand. Second chapter will elaborate the design

process of Loop-Shaping PID controller following the linearization of plant in (1.4).

Third chapter will present the in depth design process of ADRC. In fourth chapter

QLC theory will be presented. The final and fifth chapter will present the design

process in QLC theory. The final section of this chapter will end the report with

conclusive remarks on the results obtained.



Chapter 2

Loop Shaping Control

This chapter is all about loop shaping. Loop shaping is based upon frequency

response methods. Initially, the performance specification of this method will be

described in a comprehensive manner. The design methods and their fundamental

limitations will follow specifications description. It will be presented that how

these loop shaping can be applied for the design of PID controller. The collective

study will be applied on our plant given by (1.4) to produce the results.

2.1 Loop Shaping Problem Formulation

The characteristic equation of the closed-loop system is given by [1+GC(s)GP (s)].

This equation establishes the core requirement of any design problem. Specifically,

the product L(s) = GC(s)GP (s) is the heart of many control problems. This

transfer function is the heart of loop shaping design as well. The plat transfer

function GP (s) is generally known, so loop-shaping is the art of determining the

parameters of GC(s) such that frequency response of L(s) behaves as specified. In

this section a formal structure of this control problem will be presented.

2.1.1 Introductory Concepts

FIGURE: 1.1 is repeated in FIGURE: 2.1 with some additional signals and a fil-

tration block GF . Using FIGURE 2.1, following transfer functions can be obtained

Gyr =
GFGCGP

1 +GCGP

(2.1a)

Gur =
GFGC

1 +GCGP

(2.1b)

Ger =
GF

1 +GCGP

(2.1c)

14
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Gyd =
GP

1 +GCGP

(2.1d)

Gud = − GCGP

1 +GCGP

(2.1e)

Ged = − GP

1 +GCGP

(2.1f)

Gyn =
1

1 +GCGP

(2.1g)

Gun = − GC

1 +GCGP

(2.1h)

Gen = − 1

1 +GCGP

(2.1i)

They can be written be in matrix form as

Figure 2.1: Loop Shaping Problem Formulation

 yu
ya

 =


GFGCGP

1+GCGP

GP

1+GCGP

1
1+GCGP

GFGC

1+GCGP
− GCGP

1+GCGP
− GC

1+GCGP

GFGCGP

1+GCGP

GP

1+GCGP
− GCGP

1+GCGP


rd
n

 (2.2)

From above equation (2.2) following six common transfer functions can be identi-

fied.

GFGCGP
1+GCGP

GFGC

1+GCGP

GCGP

1+GCGP

GC
1+GCGP

GP

1+GCGP

1
1+GCGP

Now letting GF = 1, which usually the case, only four transfer func-

tions are left. These four transfer function are enough to describe

the system behavior. How the system will react to disturbances is

given by GP
1+GCGP

, how the system will respond to measurement noise
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is characterized by 1
1+GCGP

, how the reference will be tracked by the

closed-loop system is described by GCGP
1+GCGP

and how the controller

will react to measurement noise is given by −GC
1+GCGP

. These transfer

functions are given special names as follows

Complementary Sensitivity Function T =
GCGP

1 +GCGP
(2.3)

Sensitivity Function GS =
1

1 +GCGP
(2.4)

Load Sensitivity Function GD =
GP

1 +GCGP
(2.5)

Noise Sensitivity Function GN = − GC

1 +GCGP
(2.6)

The complementary transfer function is the relationship between ref-

erence input and the measured output, sensitivity function is the

relationship between measured output and the measurement noise,

load sensitivity is the relationship between load disturbance and the

output and finally noise sensitivity is the reaction of the controller to

measurement noise. The equations (2.3) through (2.6) are the steady

state characterization of the system and give one set of constraints

to loop shaping design. In view of the above discussion the control

procedure must ensure the followings

� Design the controller GC(s) such that GS, GD and GN are min-

imized and T approached to unity.

� Choose suitable the filter transfer function GF (s), if required,

so that reference is tracked successfully.

2.1.2 Design Specifications

As the loop shaping is based on frequency response methods, the

performance parameters are defined in terms of frequency response
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analysis. Performance parameters are defined using the complemen-

tary sensitivity function. Replacing s with j in complementary sen-

sitivity function

T (jω) =
GC(jω)GP (jω)

1 +GC(jω)GP (jω)
(2.7)

Magnitude response of a typical closed-loop transfer function (here it

is the name of complementary sensitivity function) is shown in FIG-

URE 2.2. The terms shown in this Figure are the performance pa-

rameters of loop-shaping control. The term Mr is the resonant peak,

Figure 2.2: Loop-Shaping Parameters [6]

the highest value of |T (jω)|. The parameter ωp is the frequency at

which the resonant peak occurs. The term ωb is the bandwidth of

the systems. This represents the range of frequencies from zero fre-

quency to the frequency at which the magnitude drops to 1/2 times

its DC gain. These three parameters form one set of parameters.

Another set of parameters is based on frequency response margins.

Also these parameters describe the relative stability of closed loop

system, although these parameters are defined on loop transfer func-

tion L(s) = GP (s)GC(s). These parameters are gain margin and

phase margin. Gain margin can be defined as [38]

Gain Margin (GM) = 20 log

∣∣∣∣ 1

L(jωpc)

∣∣∣∣ (2.8)
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Whereas ωpc is the phase cross-over frequency. Phase crossover ωpc

is the frequency at which arg(L(jωpc)) = 180 deg. Positive gain

margin indicates that the system is stable and negative gain margin

indicates that the closed loop system is unstable, while zero gain

margin implies marginally stable system. This is also the measure

of robustness. Whereas robustness refers to invulnerability of the

system output to the changes in system parameters up to certain

limits.

Only the knowledge of gain margin can produce misleading results.

The knowledge of another parameter called phase margin will com-

plete stability information. Phase margin is defined as [38]

Phase Margin (PM) = arg(jωgc)− 180◦ (2.9)

While ωgc is the gain crossover frequency. Gain crossover is the

frequency at which 20 log ‖L(jωgc)‖ = 0dB. Phase margin is said

to be better indicator of robustness. A phase margin of about 30

degrees to 60 degrees shows adequate robustness.

The parameters resonant peak, resonant frequency and bandwidth

are defined on the basis of closed loop transfer function and the

parameters gain margin, phase margin are defined using loop transfer

function. Some useful design and/or performance can be defined on

the basis of gang of four sensitivity functions. There are also a

number of useful specifications on the sensitivity function and the

complementary sensitivity function:

Peak Sensitivity and Peak Sensitivity Frequency: Maximum

value of magnitude response of sensitivity function is called the peak

sensitivity denoted as MS and the corresponding frequency at this

phenomenon occurs is called peak sensitivity frequency.
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Sensitivity Crossover Frequency: The minimum value of fre-

quency at which the sensitivity function becomes greater than unity

for the first time. This parameter indicates the disturbance immu-

nity of closed loop system. The disturbances of frequencies lower

than this value are successfully attenuated.

Peak Complementary Sensitivity and Peak Complementary

Sensitivity Frequency: As their names imply the maximum value

of magnitude response of complementary sensitivity function is called

the peak complementary sensitivity and the corresponding value of

frequency at which this maximum occurs is called peak complemen-

tary sensitivity frequency.

From (2.3) to (2.6), and noting that L = GCGP

T =
L

1 + L
(2.10a)

GS =
1

1 + L
(2.10b)

T +GS = 1 (2.10c)

The equations (2.10) present tradeoffs amongst various design pa-

rameters.

2.1.3 Relationship Between Time-Domain and Frequency-

Domain Design Parameters

The most dominant time domain parameters are rise time tr, settling

time ts and percentage overshoot. Roughly narrating, the time taken

by the response to reach the final value for the first time is called

rise time. The time taken by the systems output to settle within 4

to 2% of final values is called settling time. Percentage overshoot is

defined as

%Overshoot =

(
ymax − yfinal

yfinal

)
100
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The [6] product of bandwidth and rise time is approximately given by

ωbtr ≈ 2. From here it can be seen that higher the bandwidth lower

will be rise and settling time. Likewise, percentage overshoot and

resonant peak are also proportional. The bandwidth of the closed

loop system is approximately equal to the gain crossover frequency.

This implies that higher the gain crossover, so higher would be the

bandwidth. This may also give suitable phase margin, thus showing

good robustness of the system. There is another point to be noted

that the proportionality between percentage overshoot of time do-

main and the resonant in frequency is not strict. Resonant peak of

about 1.1 to 1.2 will imply reasonable overshoot.

2.2 Loop Shaping a Multi-Objective Optimiza-

tion Problem

The concepts introduced in the preceding chapter present essentially

the constraints of loop shaping design. This section is devoted to

present loop shaping design as a multi-objective optimization prob-

lem. Before it is formally narrated, some historic notes will be pre-

sented first.

2.2.1 Loop Shaping Literature Review

Inspired from communication theory [3] the control of any control

system can be divided into reference channel control (RCC) and

disturbance channel control (DCC). These two control can merely be

represented as two transfer function, the reference to output transfer

function and disturbance to output transfer function. Assuming that

the frequency contents and reference and disturbance inputs is same,

like SNR, reference to disturbance ratio (RDR) is defined as

RDR =
|TR(jω)|
|TD(jω)|

(2.11)



Chapter 2. Loop Shaping Control 21

With this the task of control system design becomes maximization

of this ratio. In [16] the controller design for automatic voltage

regulator (AVR) is presented as loop-shaping multi-objective opti-

mization problem. The solution is obtained using H2/H∞ norms.

In [15] the notion of loop-shaping is proposed inspired from MIMO

controller design approach which is based on a family of nonpara-

metric MIMO models. The fundamental notion of the approach is

to shape a family of open-loop transfer function matrices of a MIMO

system by minimizing the summation of the squared second norms.

[26] proposes the direct application of loop-shaping, but in advanced

manner. The design of PID using loop-shaping is described quite

intuitively in this [5] online document. A comprehensive treatment

of loop-shaping control is outlined in [23].

2.2.2 Statement of Loop-Shaping Control under Multi-Objective

Optimization

In view of the above discussion the design statement of loop-shaping

can be written as:

Let the controllers GC(s) is defined by the set of k parameters

{p1, p2, p3, · · · pk}, then choose the values of parameters such that

for the closed loop system following objectives are met.

minimize


GS Sensitivity (2.4)

GD Load Sensitivity (2.5)

GN Noise Sensitivity (2.6)

(2.12)

30◦ < Phase Margin < 60◦ (2.13a)

Gain Margin > 0 dB (2.13b)

To aid with better design another objective on RDR [3] can be added
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minimize |GC(jω)|2 (2.14)

Some authors [36] do include the time domain objectives as well.

They form another set of objective. The most important parameters

of time domain design are rise time, settling time, and overshoot.

This implies that

0 ≤ Percentage Overshoot POS ≤ POSdesired (2.15a)

Rise Time tr ≤ tr(desired) (2.15b)

Settling Time ts ≤ ts(desired) (2.15c)

Subject to

{ε1, ε2, ε3, · · · , εk} ≤ {p1, p2, p3, · · · , pk} ≤ {η1, η2, η3, ·, ηk}
(2.16)

Whereas ε′s and η′s are forming the bounds on corresponding pa-

rameters p′s. For LTI systems these bounds can be formulated using

Routh-Hurwitz criteria.

From the preceding formulation, four sets of objectives can be identi-

fied. The formulation of an optimization program to satisfy all these

objectives will be too complex. So, most of the authors do choose

a subset from objectives. For instance, if the objective of required

phase margin is achieved, all other objectives are essentially satisfied.

So inspired from this fact, a subset of objectives will be selected to

design the controller in this chapter.

2.2.3 Loop Shaping Design Procedure

The loop-shaping control design procedure can be divided into FOUR

major stages. The stages are plant and instrumentation analysis, se-

lection of a suitable control algorithm form, selection of a suitable
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of subset of design objective and determination of controller param-

eters.

System Analysis Stage: Before the actual design process starts,

it is necessary to know the plant. If the plant is nonlinear it must

be linearized at specified/desired set-point (because loop-shaping de-

sign is applicable to linear systems only). As loop-shaping is mainly

a frequency domain design method (although it is not limited to fre-

quency domain design in recent times), so frequency response anal-

ysis will be necessary. Particular knowing the bandwidth, phase

margin and gain margin will provide good insights into the design

process. Additionally, knowing the time domain parameters like rise

time, settling time and overshoot will help drive the design towards

specified goals.

Selection of Suitable Controller: The selection of controller is of-

ten dictated by the experience and understanding the designer have.

The selection should closely correspond to results obtained in system

analysis. The controller must overcome the shortcomings identified

in the system analysis. The foremost requirement is to bring the

stability in the system if the system was identified to unstable. And

if the system was stable initially, it should improve the relative sta-

bility of the system and the closed-loop system should be tracking

the system successfully. The form of the controller could be a trans-

fer function GC(s) = NC(s)
DC(s) representing the lead compensator, lag

compensator or lead-lag compensator. The selection of lead com-

pensator or lag compensator of the lead-lag compensator is dictated

by the need to improve transient characteristics, steady-state charac-

teristics or both respectively. PID controller could also be the choice

because it can effectively improve on the shortcomings identified as

compared with its counterparts.
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The Selection of Control-Design Objectives: Relationships de-

scribed in (2.12) through (2.12) describe various objectives of loop-

shaping design. The selection of particular objective is the results

of system analysis and the specifications to be met by the control

system. If the number of objective is increased, the optimization

program becomes complex and need high computational resources.

This would be a tighter design process. But the careful (and lesser

number of objectives) selection of objectives can lead to simpler op-

timization programs and the solution will be obtained quickly. The

iteration of simpler design process would be easier as compared with

complex design process.

Obtaining the Controller Parameters: In this stage of design

process the optimization problem will be formulated based on sys-

tem analysis results, controller selected and control objectives. The

formulation will be solved analytically or computationally depending

upon the requirements and complexity of the control design process.

The whole process can be iterated if the design specifications have

not been satisfied.

2.3 Controller Design for Magnetic Levitation

System (MLS)

In this section the process of loop-shaping design will be applied on

magnetic levitation system. The section will begin with development

of mathematical model of magnetic levitation system followed by

PID controller design. The section will end with the simulation and

results.

2.3.1 Modeling MLS

From FIGURE 2.1 [21]

m
d2h(t)

dt
= mg + fem(h, i, t) (2.17)
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In this equation m is the mass of the magnetic ball, h is the distance

from electromagnet and fem is the electromagnetic force, the function

of h, the current passing through the coil of electromagnet and time

t. The electromagnetic can be given by [22]

fem(h, i, t) = 1/2i2(t)
dLm(h)

dh
(2.18)

The quantity Lm(h) gives the variable inductance due to presence

of metallic ball. This inductance is inversely proportional to the

position of the ball relative to the electromagnet and is given by

Lm(h) = L+
L0h0

h
(2.19)

The parameter L gives the inductance of the coil itself and L0 is the

inductance at the point of levitation h0. Using (2.18) in (2.19)

fem(h, i, t) = −L0h0

(
i(t)

h(t)

)2

= −kL
(
i(t)

h(t)

)2

(2.20)

Whereas kL is supposed to be constant as demonstrated by (2.20),

but its value depends on the point of levitation. As the controller

applied will be of linear nature, so linearization of (2.20) is required.

(2.20) can be expressed using Taylor series as

fem(h, i, t) = −kL
(
Io
ho

)2

−
(

2kLIo
h2
o

)
(i−Io)+

(
2kLI

2
o

h3
o

)
(h−ho)+ · · ·

(2.21)

Under steady state condition, the velocity and acceleration of ball

will be zero, i.e. dh(t)
dt = d2h(t)

dt2 = 0. This will only happen when

the ball has been levitated at ho with the steady state current of Io.

Under these conclusions, (2.17) implies that

m
d2h(t)

dt
= mg + fem(h, i, t) = 0 ORmg − kL

(
Io
ho

)2

= 0
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From equation (2.20)

mg − L0I
2
0

h0
= 0 (2.22)

Equation (2.22) can be used to obtain the values of steady-state

parameters. Retaining only the linear terms in (2.19), and using the

resulting relation in (2.17)

m
d2h(t)

dt2
= mg − kL

(
Io
ho

)2

−
(

2kLIo
h2
o

)
(i− Io) +

(
2kLI

2
o

h3
o

)
(h− ho)

Using the relationship of (2.22) and let î = i − Io, ĥ = h − ho, the

linearized mechanical model of MLS will be

d2h(t)

dt
= −

(
2kLIo
mh2

o

)
î+

(
2kLI

2
o

mh3
o

)
ĥ

Using the value of kL from (2.20), the constants from above relation

can be defined as

k1 =

(
2kLIo
mh2

o

)
=

2h0L0I0

mh2
0

=
2L0I0

mh2
0

(2.23a)

k2 =

(
2kLI

2
o

mh3
o

)
=

2L0h0I
2
0

mh3
0

=
2L0I

2
0

mh2
0

(2.23b)

Thus the linearized version of MLS model becomes

d2ĥ(t)

dt2
= −k1î(t) + k2ĥ(t) (2.24)

Using Laplace transform, the transfer function of the system will be

(̂H)(s)

Î(s)
=

k1

s2 − k2
(2.25)

In real scenarios [52], [37], [1] each coil does have some resistance, let

it be Rc, and let the L is the inductance of the coil, then the current

passing through the coil and voltage signal from the controller can
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be related as

L
d̂i(t)

dt
+Rcî(t) = u(t)

Using Laplace transform, it can be given by

Î(s)

U(s)
=

1

Ls+Rc
=

(1/L)

s+ (Rc/L)
=

k3

s+ k4
(2.26)

Using the fact that dynamics of coil and metallic ball levitation are

in cascade, the transfer function of the MLS plant will become

Ĥ(s)

Î(s)

Î(s)

U(s)
= − k1

s2 − k2

k3

s+ k4
(2.27)

Using the parameters values from Table ?? , the transfer function

Parameter Definition Value
m Mass of Magnetic Ball 0.00564 Kg
Rc Resistance of Coil 60 Ω
L Inductance of Coil 282.2mH
ho Point of Levitation 0.02 m
Io Current through coil Corresponding to ho 0.02 A
Lo (2.22) 2.7636 H
k1 (3.23a) 980
k2 (3.23b) 980
k3 (2.26) 3.544
k4 (2.26) 212.615

Table 2.1: MLS Plant Parameters

of the plant will be

Ĥ(s)

I(s)
= −

(
980

s2 − 980

)(
3.544

s+ 212.615

)

Ĥ(s)

I(s)
= − 3473

s3 + 213s2 − 980s− 208363
(2.28)
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2.3.2 Plant Analysis

From (2.28) it can clearly be seen that the plant is unstable. FIG-

URE 2.3 shows the pole-zero plot of plant. From where it can be

seen that one of poles lie in right half of s-plane. So the task of the

controller will be two-fold, make the system stable in the firstly and

cause the control system to follow the reference successfully.

FIGURE 2.4 shows the bode diagram of the system. It indicates

infinity gain margin and phase margin which is a good thing, but

the system is unstable. As the system is unstable, so there is no

reason that the system will be satisfying sensitivity constraints. So

in terms of frequency response analysis, the task of the controller

will be make the stable and meet the objectives laid down by loop-

shaping design. Following the outlines stated so far, next subsection

presents the design of PID controller.

Figure 2.3: Pole-Zero Plot of MLS Plant
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Figure 2.4: Frequency Response Analysis

2.3.3 Control Design Using Loop-Shaping

The transfer function of a typical PD controller is given by

GC(s) = kp +
ki
s

+
kds

s+ pf
(2.29)

Which can be modified to

GC(s) =
K(1 + T1s)(1 + T2)

s(1 + s)
(2.30)

Thus the loop transfer function becomes

L(s) =
−3473K(1 + T1s)(1 + T2s)

s(1 + 1s)(s2 + 213s2 − 980s− 20363)
(2.31)

With this the design objectives of loop-shaping become (along with

roots of 1 + L(s) = 0, all lie in the left half of s-plane)

� Rise Time: tr ≤ 0.2 sec
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� Settling Time: ts ≤ 0.4 sec

� Percentage Overshoot: 0 ≤ POS ≤ 10

� Bandwidth: ωb ≥ 10 rad/sec

� Phase Margin: 30◦ < Φm ≤ 60◦

The controller is designed using MATLAB, and this comes out to be

GC(s) =
(−1.086× 105)(s+ 1.705)(s+ 5.15)

s(s+ 7821)
(2.32)

From (2.32), PID controller gains can easily be calculated. FIGURE

Figure 2.5: Step Response of PID Controller

2.5 shows the time domain response of the PID controlled system,

while FIGURE 2.6 shows the frequency response with margins.
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Figure 2.6: Stability Margins of PID Controlled System

From FIGURE 2.5 it can be seen that PID controller could not

meet all time domain specifications. Specifically, percentage over-

shoot is completely inacceptable. FIGURE 2.6 shows the frequency

response stability margins. It is usually the case that if the mag-

nitude response grows up for lower frequencies than gain cross-over

frequencies, and decays down from gain cross-over the closed-loop

systems inherits robustness and disturbance/noise rejection proper-

ties. From its magnitude response it can be seen that, it will re-

ject disturbances/noises, but will not robust to system parameters

changes. From the value of phase margin, the above argument can

be validated. A phase closer to 60 degree favors robustness. The

controller has brought stability in the closed-loop system but de-

sired response has not been met. It is the lacking of robustness

that, overshoot has risen to unacceptable values and the settling is

not what is desired. FIGURE 2.7 shows the disturbance response
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Figure 2.7: Disturbance Response

Figure 2.8: Controller’s Response
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of the system, while FIGURE 2.8 shows the controllers response to

reference input. From it can be seen that the system offers almost

perfect rejection to disturbances, but with the expense of huge con-

trollers effort. Obtainment of such a huge efforts is often physically

non-realizable.

2.4 Conclusive Remarks

Loop-shaping control is a frequency domain design method. The

term loop-shaping has been coined because of the fact that the pa-

rameters of the controller in the loop transfer function are designed

is such a way that loop response inhibits desired characteristics.

Since it is based upon optimization of response of the loop trans-

fer functions, many methods have been proposed to solve for the

controller parameters. But as the controller order and form is not

fixed, the design might require several iterations. And if the con-

troller order is fixed, the designed controller is not ensured to meet

the required specifications. This is perhaps due to the fact that this

design method does not incorporate the design required directly in

the optimization problem. But if by somehow, the constraints are

developed incorporating the design requirements, the optimization

problem becomes undesirable complex and non-linear and can cost

huge computational time.

In this chapter PID controller has successfully been design and it has

rejected the disturbance successfully. But as expected, the controller

effort is boundless. This controller has not met the theoretical expec-

tations of meeting the design requirements. Better solutions for the

control magnetic levitation system will be presented in the upcoming

chapters.



Chapter 3

Active Disturbance Rejection

Control

Minimization or even elimination of effects of disturbance and mea-

surement noise has always been a challenge for the control engineers.

The effects caused by latter inputs might always incur due to sud-

den changes in reference input. All such kind of issues have sys-

tematically been addressed in ADRC (Active Disturbance Rejection

Control). The issues are set-point jump, tracking differentiator, esti-

mating the effect of disturbance from the systems output and linear

feedback control. Such changes in set-point are controlled with ref-

erence profile generator. The reference profile generator ensures that

sudden changes in set-point do not causes abruptness in the system.

Classical controllers usually have derivative control as part of their

control algorithm. Derivative control has tendency of picking and

amplifying noise. ADRC provides the solution to such a situation.

Linear feedback estimates all the states of the systems and the con-

troller exerts its efforts according the amount of feedback, without

estimating the effects of disturbances or noises explicitly. But ADRC

dedicates an extra state (in some cases more than one state) for es-

timation of undesired effects, thus the controller counteracts them

34
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more effectively. Such a state observer is called extended state ob-

server (ESO). Although, the implementation of non-linear controller

might pose some challenges, but non-linear controller performs the

required control action. Such implementations might help avoidance

of actuator misbehavior. In this chapter a comprehensive account of

this theory is presented.

3.1 ADRC Framework

As pointed earlier, active disturbance rejection control consists es-

sentially of FOUR components. These four components have been

derived from some of shortcomings of PID controller. FIGURE-3.1

shows the block diagram of error-based PID control system. In this

diagram v is the set point, y is the output from controller and u is

the controller actuation. The error signal e is defined as e = v − y.

This actuation signal u from the controller can be defined as

Figure 3.1: Classical PID Control

u = ko

∫
e(t)dt+ k1e+ k2

de(t)

dt
(3.1)

This is primitive control mechanism offered by PID. It is such a

powerful controller, that in some cases it does not need the plant

model for its design. This point is elaborated now. A second order
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plant can be represented as
ẋ1 = x2

ẋ2 = a1x1 + a2x2 + bu

y = x1

(3.2)

Using the definition of error e1 = v − y = v − x1, this implies that

ė1 = −ẋ1 = e2 ⇒ e2 = −x2

ė2 = −ẋ2

Using these relations and equation (3.1){
ė1 = e2

ė2 = −[a1(v − e1) + a2(−a2) + bu

this leads to {
ė1 = e2

ė2 = a1e1 + a2e2 − a1v − bu

From (3.1) let e0 =
∫
e(t)dt, this implies that ė0 = e1 = e, thus (3.1)

can be written as

u = koe0 + k1e1 + k2e2 (3.3)

Using this relationship in above equation
ė0 = e1

ė1 = e2

ė2 = a1e1 + a2e2 − a1v − b(koe0 + k1e1 + k2e2)
ė0 = e1

ė1 = e2

ė2 = −bkoe0 + (a1 − bk1)e1 + (a2 − bk2)e2 − a1v

(3.4)

From this preceding relationship, it can clearly be seen that if the

controller parameters be chosen such that, bk0 > 0, a1− bk1 < 0 and
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a2 − bk2 < 0, the error dynamics will die out and the system will

be tracking the reference input. From the above analysis it can be

found that PID controller can easily be tuned for any kind of plant

as given by (3.2) and (3.4) gives the design equation. Some basic

shortcomings have been identified in literature in the applications

of PID. Firstly, the controller can actuate sudden actions if the set-

point is jump, often is the case that set-point is often in the form

of a step input. This sudden application of set-point can trigger un-

usual in some complex systems. PID control has no remedy for this

issue. Secondly, the D-part of PID controller is sensitive to noise.

To avoid this issue, a minor type of first order filter is cascaded with

D-part. But this solution can undermine the overall performance

of PID. Thirdly, the summation of three error dynamics can cause

unusual behavior. And finally, the integral term in PID cannot be

avoided, since it ensures the steady state performance of the system.

D-term is often avoided if it is not needed critically. As the I-term

introduces a pole on the origin, so it can cause saturation of the

actuators and sometimes can lead to instability. The solutions to all

these problems are offered by ADRC framework as detailed below.

3.1.1 Setpoint Profile Design

To avoid the bad effects of set-point, smoother profile can be designed

as follows. For the design of such a profile, it is assumed that the

plant is nth order integrator. A nth order plant can be modeled as
ẋ1 = x2

ẋ2 = x3
...

ẋn = u

(3.5)
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Letting |u| ≤ r, u can be given by

u = −r sign

(
x1 − v

xn|xn|
2r

)
(3.6)

Using the principle outlined by (E3.6), the transient can be obtained

from the solution (E3.7)
v̇1 = v2

v̇2 = v3
...

v̇n = −r sign
(
x1 − v xn|xn|2r

) (3.7)

The parameter v is the set point and the value of parameter r deter-

mines the speed of transient profile. That is r is the design param-

eter. Discrete time implementation of (E3.7) is also possible within

a digital processor. But the relationships are very complex to be

implemented. Often such an implementation is avoided. But if the

transient profile design inevitable, first of second order filters are

used to smooth out troubling spike in set-point jumps.

3.1.2 Tracking Differentiator

Tracking differentiator is the second fundamental component in the

design and application of ADRC. In PID framework, it often imple-

mented as

Ud(s) =
kds

Tfs+ 1
=
kd
Tf

(
1− 1/Tf

s+ 1/Tf

)
E(s) (3.8)

Whereas kd is the derivative constant, Tf is the filters time constant

ud is the D-part of actuation signal and e is the error signal. A

time-domain description of (3.8) can be written as

ud(t) =
kd
Tf

(e(t)− e(t− Tf)) (3.9)
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From (3.9) it can be seen even if the amount of noise is very small, it

will be amplified by the gain kd
Tf

. One possible solution to this issue

is to minimize kd and/or to increase Tf . But such a choice can lead

to almost no contribution from derivative control term. A better

remedy is given in the framework of ADRC.

The error derivative can be given by another way

ė ≡ e(t− τ1)− e(t− τ2)

τ2 − τ1
(3.10)

The transfer function of this approximation can be given by

W1(s) =
1

τ2 − τ1

(
1

τ1s+ 1
− 1

τ2s+ 1

)
(3.11)

This provides enough attenuation to the noise, depending upon the

proper choice of parameters τ1 and τ2. A second order approximation

to derivative has also been suggested. Which can be given by

W2(s) =
s

(τs+ 1)2

Whose time domain description will be

ë = −r (e− v(t))− 2rė) (3.12)

The implementation of equation (3.12) can be inspired by (3.7).

3.1.3 Non-Linear Feedback Controller

Third fundamental component of ADRC is the non-linear feedback

controller. This type of controller can be defined as

u = fal(e, α, δ) =

{
e

δ−α x ≤ δ

|e|αsign(e) x > δ
(3.13)
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Whereas the discrete time realization of (3.13) is given by

fhan(x1, x2, · · · , xn, r, h0)

similar to (3.7). From (3.13), it can be seen that this kind of control

could be very useful. Not only it can ensure stability, but the non-

linear saturation might also be avoided.

3.1.4 The Extended State Observer

The most important component of ADRC is the extended state ob-

server. It is well known that a nth order system can have n states

and if the states are not directly measureable, nth order state ob-

server/estimator is designed to obtain the states from the measure-

ment of output. The term extended state observer has been formed

due to the fact more than n states are estimated. The extra states

give the information about the presence of disturbance and unusual

behavior within the system. Thus extended state observer plays an

important role in the rejection disturbance. Let a plant is described

as 

ẋ1 = x2

ẋ2 = x3
...

ẋn = xn−1 + f(x1, x2, · · · , xn, w(t), t) + bu

ẋn+1 = g(t)

Here f represents the total disturbance and this is to be estimated

by xn+1. In most cases, one extra state is considered adequate for

the estimation of disturbances. But if required mode more than one

states can also be estimated. Putting everything together, following

configuration of ADRC, shown in FIGURE 3.2, is obtained as sug-

gested fundamentally. In the upcoming section some design methods

of ADRC are presented.
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Figure 3.2: ADRC Framework

3.2 Linear ADRC

From the above discussion it can be seen than all three major compo-

nents of ADRC: tracking differentiator, extended state observer and

state error feedback are non-linear in nature. Each component con-

tains one or more parameters, the design of is not straightforward.

Additionally, it might require a number of iterations due to fact that

no stability criterion exist on which the design could be processed.

In [42] extended circle criterion to ensure closed-loop stability has

been presented, but using this criterion as a design might need a

number of criterion.

Fortunately, linear versions of ADRC has also been developed, which

inherits stability methods and design methods from classical control

theory. The best thing is that theme features of ADRC like smooth

reference tracking, active disturbance rejection has been retained by

the linear version of ADRC.

This subsection is concerned with the design methods of ADRC. The

section will begin with the process of designing linear ESOs for first

order and second order system. Methods of designing generalized

ADRC will follow. Since linear ADRC is retaining the good features

of fundamental ADRC, so the discussion of non-linear ADRC will be

avoided in this work.
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3.2.1 Design of ADRC for First Order Systems

Consider the first order plant

Y (s)

U(s)
= Gp(s) =

k

s+ a
(3.14)

Then

ẏ + ay(t) = ku(t)

Let there is a disturbance input d(t) and let k = k0 + ∆k, then the

output-input relationship can be written as

ẏ + ay(t) + d(t) = (k0 + ∆k)u(t)

ẏ + ay(t) + d(t) + ∆ku(t)︸ ︷︷ ︸ = k0u(t)

ẏ + f(t) = k0u(t) (3.15)

The function f(t) represents clutter, disturbances, noises, modeling

errors and parametric variations etc. Now the job of ESO becomes

to estimate everything which can perturb the smooth functioning of

the systems and to remove it. As the observer design process has

been inspired by Kalman filtering concepts, so state-space modeling

of the system in (3.15) is required.[
ẋ1

ẋ2

]
=

[
0 1

0 0

][
x1

x2

]
+

[
0

k0

]
u(t) +

[
0

1

]
f(t)

As the system input and output are accessible, so the states of the

system can be estimated along with the function f(t). One way

doing this is to use Luenberger observer. According to this proposed

method [
˙̂x1

˙̂x2

]
=

[
0 1

0 0

][
x̂1

x̂2

]
+

[
0

k0

]
u(t)−

[
l1

l2

]
(x̂1 − y(t))
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˙̂x1

˙̂x2

]
=

[
−l1 1

−l2 0

][
x̂1

x̂2

]
+

[
0

k0

]
u(t) +

[
l1

l2

]
y(t) (3.16)

Using the control law u(t) = u0(t)−f(t)
k0

, with u0(t) = kp(r(t)− y(t)),

the equation (3.15) becomes

ẏ + kpy(t) = kpr(t) (3.17)

Equation (3.16) shows the observer implementation equation and

(3.17) gives the controller equation. From (3.16) and (3.17) it can

be seen that it is entirely independent of what the actual system is.

This is the notion which makes it different from model predictive

control. From (3.16), the system matrix of the ESO will be

A− LC =

[
−l1 1

−l2 0

]

Therefore, the characteristic equation of the observer becomes

|sI − A+ LC| = s2 + l1s+ l2 = 0 (3.18)

As the system is first-order, the unknown the controller parameter

kp can be determined based on required settling time. For the first

order system, settling time can approximately be given by

ts ∼=
4

τ

For the system in (3.17), = 1
kp

, therefore

kp =
4

ts

Once the controller gain has been calculated, the observer parameters

can be determined as follows. As the observer is to estimate the

states, so it must faster than controller. One crude of doing so is to
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set observe poles at

PESO
1,2 = (5 ∼ 10)× PCL =

4(5 ∼ 10)

ts

With the desired characteristic equation of the extended observer

becomes

(s−PESO
1 )(s−PESO

2 ) = s2−(PESO
1 +PESO

2 )s+(PESO
1 PESO

2 ) (3.19)

Thus comparing (3.18) and (3.19)

l1 = −(PESO
1 + PESO

2 ) and l2 = (PESO
1 PESO

2 )

This completes the design of ADRC for the first order systems.

3.2.2 ADRC Design for Second Order System

Next considering a second order plant

Y (s)

U(s)
= GP (s) =

k

s2 + a1s+ a0

The time domain description of this system will be

ÿ + a1ẏ + a0y = ku

Similar to second order case, this can be rewritten as

ÿ + a1ẏ + a0y + d(t)−∆ku(t)︸ ︷︷ ︸ = k0u(t)

Its state-variables representation will be
ẋ1

ẋ2

ẋ3

 =


0 1 0

0 0 1

0 0 0



x1

x2

x3

+


0

k0

0

u(t) +


0

0

1

 ḟ(t)

Where as usual, x3 = f(t) is representing the disturbance and mod-

eling errors in the system. Assuming that an estimator that will
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produce faithful estimation of the state of the system, an implemen-

tation of the observer system can be given by
˙̂x1

˙̂x2

˙̂x3

 =


0 1 0

0 0 1

0 0 0



x̂1

x̂2

x̂3

+


0

k0

0

u(t)−


l1

l2

l3

 [x̂1 − y(t)]


˙̂x1

˙̂x2

˙̂x3

 =


−l1 1 0

−l2 0 1

−l3 0 0



x̂1

x̂2

x̂3

+


0

k0

0

u(t) +


l1

l2

l3

 y(t) (3.20)

From equation (3.20) the system matrix of the observer will be

A− LC =


−l1 1 0

−l2 0 1

−l3 0 0


And hence the characteristic equation will be

|sI − A+ LC| = s3 + l1s
2 + l2s+ l3 (3.21)

With the availability of states, control law can be defined as

u(t) =
1

k0
(u0(t)− f̂(t))

Whereas u0(t) is defined as

u0(t) = kp (r(t)− ŷ(t))− kdẏ

The desired equation of the system becomes

ÿ + kdẏ + kpy = kpu (3.22)
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The most common ways of designing second-order system are based

on settling time and percentage overshoot specifications. Given de-

sired percentage overshoot, the value of damping ratio ζ can be de-

termined from

% OS = 100 exp(− ζπ√
1− ζ2

)

Once the value of ζ is known, the value of un-damped natural fre-

quency ωn is given by 2 % settling time criterion

ts =
4

ζωn

Then closed loop roots of the system are given by

sCL1,2 = −ζωn ± j
√

1− ζ2

Similar to first order system, the observer poles can be obtained from

PESO
1,2 = (5 ∼ 10)× PCL

1,2

Third pole can be placed even farther from Re(PESO
1,2 ) on real axis

in the left half of s-plane.

3.2.3 Design of Generalized ADRC

From the conclusions above, any Nth order system can be repre-

sented by

y(n) + f(t) = k0u(t)
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Generalizing (3.16) and (3.20), it can be shown that ESO implemen-

tation equation for an nth-orde system will be


˙̂x1

˙̂x1
...

˙̂xn

 =



0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1

0 0 0 · · · 0




x̂1

x̂2
...

x̂n

+



0

0
...

0

k0

0


u(t)−



l1

l2
...

ln−1

ln


(x̂1 − y(t))

And desired characteristic equation of the observer will become

|sI − A+ LC| = sn + l1s
(n− 1) + l2s

(n− 2) + + l(n− 1)s+ ln = 0

Defining a control law

u(t) =
u0(t)− f(t)

k0

whereas

u0(t) = k1(r(t)− x̂1(t))− k2x̂2(t)− k3x̂3(t)− · · · − knx̂n(t)

A number of procedures can be found in literature. One way of doing

so is to compare the desired and defined characteristic equations.

Ackermans can also be used for this purpose. And Finally LQR

methods can also be used to find the best pole locations both for

feedback controller and ESO (Extended-State-Observer).

3.3 ADRC Control Design for MLS Plant

This section presents the implementation of ADRC on the MLS

plant.
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3.3.1 The Plant Model

From equation (2.28)

Y (s)

U(s)
= − 3473

s3 + 213s2 − 980s− 208363

In differential equation form

...
y + 213ÿ − 980ẏ − 208363y = −3473u(t)

...
y + underbrace213ÿ − 980ẏ − 208363y + d(t) + 3473u(t) = u(t)

...
y + f(t) = u(t)

Thus the state-space representation of the system will be
ẋ1

ẋ2

ẋ3

ẋ4

 =


0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0



x1

x2

x3

x4

+


0

0

1

0

u(t) +


0

0

0

1

 ḟ(t) (3.23)

3.3.2 ADRC Controller Design

Assuming that the observer to be designed will faithfully estimate

the states, then Luenberger form of the observer will be
˙̂x1

˙̂x2

˙̂x3

˙̂x4

 =


0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0



x̂1

x̂2

x̂3

x̂4

+


0

0

1

0

u(t)−


l1

l2

l3

l4

 {x̂1(t)− y(t)}


˙̂x1

˙̂x2

˙̂x3

˙̂x4

 =


−l1 1 0 0

−l2 0 1 0

−l3 0 0 1

−l4 0 0 0



x̂1

x̂2

x̂3

x̂4

+


0

0

1

0

u(t) +


l1

l2

l3

l4

 y(t) (3.24)
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Using a control law u(t) = {u0(t) + f(t)}, whereas

u0(t) = k1[r(t)− ŷ(t)]− k2
˙̂y(t)− k3

¨̂y(t)

The design equation for out controller becomes

...
y + k3ÿ + k2ẏ + k1y = k1u

From here the characteristic equation of the system will be

s3 + k3s
2 + k2s+ k1 = 0 (3.25)

Using the control specifications of Chapter 2, the required damping

ratio is ζ = 0.7 and undamped natural frequency for ts = 0.4 sec is

ωn = 100
7 . Thus the dominant closed-loop poles of the system should

be at

s1,2 = −10± j10.2

To minimize the effect third pole, this should be placed about 5 to

10 times farther into the LH of s-plane. So let s3 = −80. Thus the

desired characteristic equation becomes

(s+ 80)(s2 + 20s+ 204.04) = s3 + 100s2 + 1804.04s+ 16323.2 = 0

(3.26)

Values of all controller parameters can easily be obtained by com-

paring equations (3.25) and (3.26). For faster estimation of states,

let the dominant poles be multiplied by 15, then the characteristic

equation of the ESO becomes

(s2 + 300s+ 45909)2 = 0

Thus the parameters of ESO can be calculated from

s4 + 600s3 + 181818s2 + 27545400s+ (2.1076× 109) = 0 (3.27)
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From equation (3.27) observer parameters can easily be obtained.

This completes the ADRC control design. The characteristic equa-

tion of the ESO will be

s4 + l1s
3 + l2s

2 + l3s+ l4 = 0

Comparing equation (3.27) with (3.24), following observer implemen-

tation equations are obtained.

˙̂x1 = −600x̂1 + x̂2 + 600y(t)

˙̂x2 = −181818x̂1 + x̂3 + 181818y(t)

˙̂x3 = −27545400x̂1 + x̂4 + 27545400y(t) + u(t)

˙̂x4 = −(2.1076× 109)x̂1 + (2.1076× 109)y(t)

3.3.3 System Simulations

FIGURE-3.3 shows the implementation of ADRC control for MLS

plant. In this design and implementation two component of ADRC

scheme has been used (It consists originally of transient profiler,

extended-state-observer (ESO) and feedback controller).

Figure 3.3: ADRC Control System
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3.3.4 Results

FIGURE 3.5 shows the step and disturbance responses of the system

based on ADRC control. From here it can be seen that although the

original system is unstable, the ADRC controller not only stabilizes

the system, but ensures satisfaction of design requirements. A small

steady state error can be seen which could be of less concern in many

cases in comparison to advantages the method has brought. These

good things are, that the system has no overshoot, settling time is

lower than for what value the controller was designed, it has provided

good rise.

FIGURE 3.4 shows both reference and disturbance inputs. The dis-

turbance input has been generated using Gaussian process. This

disturbance input was applied to the system along with reference,

and from the systems response it can be seen that it has not affected

the system performance.

Along with step and disturbance responses, FIGURE 3.5 also shows

the controller effort. From here it can be seen that the controller

does not show any response to disturbance input. So it can be said

that the controller has given perfect rejection of disturbance inputs

and faithful tracking of reference signals. But the controller poses

some serious issues in regards to its practical implementations. These

issues have been pointed out in the next section.

3.4 Conclusive Remarks

As stated above, that FIGURE 3.5 shows perfect tracking of refer-

ence input. But from the same figure it can be seen that initially

when the step input is applied, the controller effort is approaching

a value of about 60 units which is enormous. Such a large signal

can quickly and easily saturate the controller. If the controller is
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Figure 3.4: Step and Disturbance Inputs to ADRC Controlled System

Figure 3.5: Step and Disturbance Responses along with Controller Effort
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restricted to certain limits (keeping in view that it will be imple-

mented physically with some kind of hardware), the output response

completely deteriorates and the controller is unable to enforce correc-

tions. This can be seen in FIGURE 3.6 and FIGURE 3.7. FIGURE

3.6 shows the output after saturation limits are applied and FIGURE

3.7 shows the controller effort. Controller gives the feel of eagerness

to impose corrections according as the reference inputs. But as its ef-

fort is limited by the saturation, so it is unable to. From these results

it can be concluded that due to limited output from the controller,

the output may not track the input. So while designing controllers,

this limitation must be considered. The solution to this problem has

adequately been addressed in quasilinear control theory, which will

be presented in upcoming chapters.

Figure 3.6: Input/Output Waves after Saturation Imposition
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Figure 3.7: Saturated Controller Effort



Chapter 4

Quasilinear Control

This chapter presents a brief introduction to stochastic lineariza-

tion the main mathematical gizmo of this work. The term quasi-

linear was introduced in about 1886 in the context of the solutions

of partial differential equations for the systems exhibiting complex

non-linearities. The term quasilinear refers to the fact, that if the

input and out of the system are linear within acceptable limits, the

system is said to be quasilinear. If some system is not lying under

the criterion of quasilinear, and the process of transforming such

system to become quasilinear, is called quasilinearization. In con-

trol theory, the non-linear instruments are linearized assuming that

the non-linearity will never be actuated under defined variances and

means. But, such an expectation is always impractical. This chapter

will start with an introduction of quasilinearization in control the-

ory and the developed notions will be applied to the linearization of

saturation non-linearity. Then the concepts and developed princi-

ples will be applied to the closed loop systems and required solution

requirements will be established.

4.1 Introductory Concepts

This section describes the subject of quasilinear control theory (QLC).

The tactic of QLC is based on a quasilinearization practice stated

55
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to as stochastic linearization. This technique was established about

half century ago and is being utilized in the design of various con-

trol systems. But noteworthy work has been proposed in just the

last decade. Stochastic linearization assumes that the signals under

consideration will be random. In classical control theory, the con-

trol systems are designed against faithful tracking of steps, ramps

and parabolic inputs. But in practice, the references and distur-

bances could pose random variations to the system. For instance,

in the hard disk drive control problem, the read/write head in both

track-seeking and track-following operations is affected by reference

signals that are well modeled by Gaussian colored processes. Many

other examples can be narrated in which references can be modeled

as random processes. Thus, along with disturbances, QLC assumes

that the reference signals are random processes and, using stochastic

linearization, provides methods for designing controllers for both ref-

erence tracking and disturbance rejection problems. The controllers

designed based on deterministic inputs, might miss-behave to ran-

dom changes and the controller effort might actuate non-linearities.

QLC provides solution to this issue as well.

4.1.1 The Concept of Stochastic Linearization

FIGURE 4.2 explains the basic theme of QLC theory. Let u(t) is

the actuation signal from the controller having the characteristics

of wide-sense-stationary (WSS) normal process with standard devi-

ation of σu and µu. If the signal is written as u(t) = u0(t) + µu,

then u0 (t) is zero mean Gaussian process. The function f(u) is a

piece-wise differentiable function, which is a transformation of input

signal into non-linear actuator signal. If the function v(t) = f(u(t))

is represented by v̂(t) = Nu0(t) + M , whereas the constants must
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minimize the error function

ε(N,M) = E[v(t)− v̂(t)]2 (4.1)

This is known as quasilinearization and the constants N and M are

Figure 4.1: Saturated Controller Effort

the quasilinear gains and E is the expectation operator. The error

function is minimized if

N = E

[
df(u)

du

∣∣∣∣
u=u(t)

]
(4.2a)

M = E
[
f(u)|u=u(t)

]
(4.2b)

Equation (4.2 can be proved as follows. Differentiating (4.1) wrt N ,

and equating to zero

∂E

∂N
= E [−2u0(t)f(u)−Nu0(t)−M ] = 0

E [u0(t)f(u)]−NE
[
u2

0(t)
]
−ME [u0(t)] = 0

As the u0(t) is a zero mean Gaussian process, therefore

N =
E[u0(t)f(u)]

E[u2
0(t)]

=
E[u2

0(t)]E[f ′(u)]

E[u2
0(t)]

= E[f ′(u)]



Chapter 4: Quasilinear Control 58

This proves (4.2a). (4.2b) can be proved by differentiating (4.1) wrt

M and equating to zero

∂E

∂M
= E[−2f(u)−Nu0(t)−M ] = 0

M = E[f(u)]

Thus QLC can be defined as converting the unbounded signals to

bounded using stochastic linearization under the assumptions, that

the input signals are random processes. This big concept can be used

to avoid saturation and other nonlinear effects within the system. A

Figure 4.2: Feasible Quantization

more feasible and practical situation of quasilinear linearization is

depicted in FIGURE 4.2.

According to this model, the quasilinear gain N multiplies with u(t)

itself, not with u0(t). This kind of quasilinearization model suits bet-

ter in closed-loop configuration as compared with that of FIGURE

4.1. From FIGURE 4.2

m = M −Nµu (4.3)

As in this work the effects of saturation are to be overcome, it will
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Figure 4.3: Saturation Non-Linearity

be worthwhile to quasilinear this non-linearity. FIGURE 4.3 shows

the saturation non-linearity.

Mathematically it can be defined as

f(u) =


α ; u ≥ α

u ; β < u < α

β ; u ≤ β

(4.4)

Taking derivative with respect to u

df(u)

du
=

{
0 ; α ≤ u ≤ β

1 ; β < u < α
(4.5)

Thus using the definition of N , M , their values will be

N =

∫ α

−α

1√
2πσu

exp

(
− 1

σ2
u

(u− µu)2

)
du
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Let z = 1
σ2
u
(u− µu)2, the above integral becomes

N =

∫ α+µu√
2πσu

− α+µu√
2πσu

1√
π

exp
(
−z2

)
dz

This last integral is evaluated to become

N = erf

(
α + µu√

2πσu

)
(4.6)

Similarly, the constant M can be defined as

M =

∫ −α
−∞

−α√
2πσu

exp

(
− 1

σ2
u

(u− µu)2

)
du

+

∫ α

−α

u√
2πσu

exp

(
− 1

σ2
u

(u− µu)2

)
du

+

∫ ∞
α

α√
2πσu

exp

(
− 1

σ2
u

(u− µu)2

)
du

The first and the last integral will evaluate to become zero, so

M =

∫ α

−α

u√
2πσu

exp

(
− 1

σ2
u

(u− µu)2

)
du

This above integral evaluates to

A = 2αerf

(
α + µu√

2πσu

)

B =
α + µu√

2πσu
erf

(
α + µu√

2πσu

)
C =

α− µu√
2πσu

erf

(
α + µu√

2πσu

)

D =
1√
π

exp

(
−
(
α + µu√

2πσu

)2
)

E =
1√
π

exp

(
−
(
−α + µu√

2πσu

)2
)
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So all components of the solution combined together

M = A−B − C −D + E (4.7)

4.1.2 Open-Loop Quasilinear Control

Consider open-loop control system shown in FIGURE 4.4. For sim-

plicity let the controller be GC(s) = K, then

y(t) = gP (t) ∗Kf (u(t)) ∗ r(t)

Where gP (t) =−1 GP (s) is the impulse response of the plant. Now

using the quasilinearization of FIGURE 4.2

Figure 4.4: Open-Loop System

y(t) = K [gP (t) ∗ (m+Nu0(t)) ∗ r(t)] (4.8)

Using the definitions of quasilinearization, the above relation can be

written as

Y (s) = K (m+NU0(s))R(s) (4.9)

4.1.3 Closed-Loop Quasilinear Control and Reference Track-

ing

FIGURE 4.5 shows a complete model of quasilinear control. The

assumptions on which the particular theory will be built are:

� The filters Fr(s) and Fd(s) are available which help to smooth

sudden changes. The randomness is introduced by the parame-

ters of the signal, that is, the standard deviations and means.
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Figure 4.5: Closed-Loop Quasilinear Control

� If in the settings above, u is approximated by u′ as will be

demonstrated shortly, the nature of u′ could be of deterministic

nature.

� f(y) and f(u) are representative of the saturation non-linearity

that might occur in controller and/or sensor.

� Both f(u) and g(y) are representable using the model of FIG-

URE 4.2 as shown in FIGURE 4.6. Whereas the quasilinear

gains have been obtained using definitions (4.2) and (4.3).

Figure 4.6: The Quasilinear Control

Under the settings shown in FIGURE 4.6, the task of closed-loop

analysis becomes, determining the relationships between various pa-

rameters of the closed loop system. For this purpose, let
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B The disturbance d(t) = 0

B The system is operating in stationary regime

B g(y) = y, which implies that Ns = 1, Ms = µy and ms = 0

B The values of Na, Ma and ma are available using the definitions

of (4.2) and (4.3)

Under the above assumptions

Û(s) =
Gc(s)

1 +NaGC(s)GP (s)
R(s)− GC(s)GP (s)

1 +NaGC(s)GP (s)

ma

s
(4.10)

Since the second contributor term in (4.10) is a constant, so its vari-

ance will be zero. With this a good approximation to variance of

û(t) can be given by

σû =

∥∥∥∥ GC(s)

1 +NaGC(s)GP (s)

∥∥∥∥
2

(4.11a)

σû =

√
1

2π

∫ ∣∣∣∣ GC(jω)

1 +NaGC(jω)GP (jω)

∣∣∣∣2 dω (4.11b)

It should be noted that since pre-filtering block is absent, it is ex-

pected to give good approximation of Na. The value of expectation

of û can be determined by using the fact that for linear systems H(s)

µOUTPUT = H(0)µINPUT

Applying this definition of equation (4.10)

µû =
GC(0)

1 +NaGC(0)GP (0)
µr −

GC(0)GP (0)

1 +NaGC(0)GP (0)
ma

Let C0 = GC(0), the dc gain of controller and P0 = GP (0), the dc

gain of the plant, the above relationship can be rewritten as

µû =
C0

1 +NaC0P0
µr −

C0P0

1 +NaC0P0
ma (4.12)
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This can be modified to read as

ma =
µr
P0
−
(

1

P0C0
+Na

)
(4.13)

Another way to express muû will be

muû = C0(µr − P0E[v̂]) = C0(µr − P0E[v]) = C0(µr − P0Ma)

Solving this equation for Ma

Ma =
µr
P0
− 1

C0P0
µû (4.14)

From equations (4.6) and (4.7) it can be seen that the values of

quasilinear gains N and M are the functions of σ and µ, using this

fact and equation (4.14)

Na = FN

(∥∥∥∥ GC(s)

1 +NaGC(s)GP (s)

∥∥∥∥
2

σr, µû

)
(4.15a)

µr
P0
− µû
C0P0

= FM

(∥∥∥∥ Fr(s)GC(s)

1 +NaGC(s)GP (s)

∥∥∥∥
2

σr, µû

)
(4.15b)

These equations (4.15) give a simultaneous but non-linear system of

equation of equation in two unknowns Na and µû, which can easily

be solved using MATLAB. Once latter parameters are known, the

value of ma can be determined using (4.13). The parameters P0 and

C0 are the DC gains of plant and the controller respectively.

As in this work, the symmetric non-linearity will be considered, the

solution of equations (4.15) will always exist, but there are certain

limits for the existence of solution, if non-symmetric linearity is as-

sumed [48].



Chapter 4: Quasilinear Control 65

4.1.4 Closed-Loop Quasilinear Control and Disturbance

Rejection

Similar to reference tracking, the system of the equations involving

can be found. To do this, followings are the assumptions.

B The sensor is linear that is g(y) = y and let r(t) = 0

B The system is operating in stationary regime.

The transfer function from d(t) to û will be

Yd→û(s) =
GC(s)GP (s)

1 +NaGC(s)GP (s)

From where, the relationship between σd and σû will be

σû =

∥∥∥∥ GC(s)GP (s)

1 +NaGC(s)GP (s)

∥∥∥∥
2

σd (4.16)

The relationship between µd and µû will be

µû = −C0P0(Ma + µd) (4.17)

Using the definitions of quasilinear gains

Na = FN

(∥∥∥∥ Fd(s)GC(s)GP (s)

1 +NaGC(s)GP (s)

∥∥∥∥
2

σd, µû

)
(4.18a)

−µd −
µû
C0P0

= FM

(∥∥∥∥ Fr(s)GC(s)GP (s)

1 +NaGC(s)GP (s)

∥∥∥∥
2

σd, µû

)
(4.18b)

The solution of above equations will also exist for symmetric non-

linearities.

4.1.5 Statistical Accuracy

This subsection presents a method to measure the accuracy of quasi-

linearization. As this this work is concerned about the saturation
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non-linearity, so the all discussion will be focused on it. The par-

ticular system setting are shown in FIGURE 4.5, where f(u) is the

saturation non-linearity.

The accuracy is defined by the probability by which the corners of

the non-linearity are reached. That is

A = P [µ ≤ α]− P [µ ≥ α] (4.19)

The parameter A is representing the accuracy of approximation pro-

posed by FIGURE ??. The value of A = 0 signifies the fact that

saturation is activated equally to upper and lower levels. But if

A > 0, this implies that the non-linearity has been touched to its

upper level and A < 0 indicates that lower level of saturation is be-

ing touched. As A is the difference of two probabilities, it satisfies

the inequalities

− 1 < A < 1 (4.20)

The probabilities in (4.21) and hence the value of A can be computed

using (4.21)

A =
1

2

[
erf

(
α + µu√

2σu

)
− erf

(
α + µu√

2σu

)]
(4.21)

Following comments are in order for the value of A and its interpre-

tation. The value of A indicates the accuracy of quasilinear gains.

Smaller the value of A, better the approximation is. From its defi-

nition in (4.21), it can be seen that A will be small if:

• µu near to ZERO, which is the midpoint of non-linearity.

• σu is reasonably large (not too large) and µu lies on the linear

region of saturation. This fact signifies that the actuating signal

remains within limits and the saturation is never activated.
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• σu is much bigger than the saturation buff. Bigger value of σu

infers that the saturation is equally triggered from above and

below.

4.2 Quasilinear System Performance

This section is concerned with the development of tools for the per-

formance analysis of QLC systems. In classical control theory these

tools are, stability analysis, state-state analysis, transient analysis,

root locus and frequency domain methods of bode diagrams, Nichols

charts and Nyquist plots. In QLC theory almost all concepts are car-

ried forward but under constrained conditions. As mentioned above,

saturation could be symmetric and asymmetric. The performance

analysis for symmetric saturation has extensively been developed in

[11]. While the performance analysis for asymmetric saturation is

developed in [48]. So, in this section, comprehensive treatment to

both works is given. Because this theory will be applied for the

design QLC controller for the proposed plant in this work.

4.2.1 Reference Tracking Performance

In this subsection, stochastic linearization is applied to closed-loop

QLS to analyze the tracking performance of closed-loop QLS. The

discussion begins with an exciting example to establish that stochas-

tic linearization offers a good tactic for the analysis of tracking per-

formance of systems modeled as linearized plants-non-linear- instru-

mentation (LPNI). The concept of trackable of domain defined as

the maximum step that could be tracked will be established. Fi-

nally, quality indicators are introduced being used to give numerical

interpretations to tracking performance of quasilinear systems. Al-

most all the results are based on symmetric non-linearity. Consider
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Figure 4.7: Analysis of Tracking Performance

the closed loop system of FIGURE 4.7(a) described by

GP (s) =
10

s(s+ 10)
GC(s) = 5 (4.22)

Assume that ωr is the standard white noise process defined using

Gaussian random process with σr = 1 and µr = 0 and the filter

FΩr(s) is Butterworth low pass filter, with order 3 given by

FΩr(s) =

√
3

s3 + 2s2 + 2s+ 1
(4.23)

The quasilinearized version of this quasilinear system is shown in

FIGURE 4.7(b). From the description of the plant P0 = lims→0GP (s) =

lims→ ∞
10

s(s+10) = ∞ and C0 = 5, then the use of equations (4.10)

and (4.12) gives

σµ̂ =

∥∥∥∥∥ 5
√

3s(s+ 10)

(s3 + 2s2 + 2s+ 1)(s2 + 10s+ 50Na)

∥∥∥∥∥
2

(4.24a)

Ma = 0 (4.24b)
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Now from equations (4.15), the system of simultaneous equations

will become

Na − FN

(∥∥∥∥∥ 5
√

3s(s+ 10)

(s3 + 2s2 + 2s+ 1)(s2 + 10s+ 50Na)

∥∥∥∥∥
2

, µû

)
(4.25a)

FM

(∥∥∥∥∥ 5
√

3s(s+ 10)

(s3 + 2s2 + 2s+ 1)(s2 + 10s+ 50Na)

∥∥∥∥∥
2

, µû

)
= 0(4.25b)

Following three cases of saturation non-linearity will be considered

in this analysis.

• Symmetric saturation with α = −1 and β = +1

• Asymmetric saturation with α = −0.5 and β = +1.5

• Asymmetric saturation with α = −0.2 and β = +1.8

It should be noted that β + |α| = 2 that total saturation prone to

activation remains equal with asymmetric distribution in two cases.

For each case, luckily unique solution to (4.25) is obtained and closed-

loop QLS is obtained as shown in FIGURE 4.7(b). The performance

is indicated using the accuracy measure A of (E4.20). For the first

case, the value of accuracy parameter A is zero, as expected because

the saturation is symmetric. Second and third case produce the value

of A -0.46 and -0.8 respectively. The non-zero values of A indicate

that the non-linearities are asymmetric. From the above analysis it

can be seen that tracking performance deteriorates proportionally

with the magnitude of asymmetry.

Moreover, stochastic linearization gives closer approximates of all

three quantities for the original nonlinear system. Consequently, as

far as the estimate of loss of tracking is concerned, the quasilinear

system is a good approximation to the LPNI and A-LPNI systems.

This example validates that stochastic linearization may be apposite

to envisage the quality of tracking in A-LPNI systems. Obviously,
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if σê is lesser, dynamic tracking is good and small value of µê is

small, steady state tracking is good. It implies that for good tracking

requires both error signal mean and variance be small.

But, if they are large, the reason for poor tracking is not directly

clear. For this reason, the notions of step and ramp trackable do-

mains are developed, which determine the set of step sizes and ramp

slopes that can be tracked in the presence of saturation. These do-

mains are proper extensions of the ones in the symmetric case.

4.2.2 The Notion of Trackable Domains

Consider the system of FIGURE 4.8, where r(t) = r0us(t) with

r0 ∈ R and us(t) is the unit step function. The trackable domains

(TD) are determined using the concept of steady state error which

is defined as

ess = lim
t→∞

= lim
s→0

sE(s)

Under the assumption that ess exists, for LTI systems it can be given

by

ess =
1

1 + P0C0
r0

For any A-LPNI systems this is not true at all times. This fact

is recognized by the following. If the signal u, the input to the

Figure 4.8: Trackable Domains

saturation non-linearity, never touches either bounds, or , then

−α < uss =
r0C0

1 + C0P0
< α
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− α < r0
1
C0

+ P0

< α =⇒

∣∣∣∣∣ r0
1
C0

+ P0

∣∣∣∣∣ < α (4.26)

The relationship in (4.26) defines the step trackable domain. If r∗0 is

the maximum step that can be tracked by QLC system, then it is

given by

r∗0 <

∣∣∣∣∣ 1
1
C0

+ P0

∣∣∣∣∣ (4.27)

As the design process concerns with avoiding the nonlinearity, this

implies that (4.26) is the design equation, because it is usually the

case that C0 and P0 are positive. The use of (4.26) will help design

the steps that could be tracked smoothly.

Equation (4.26) can be written as

− α
(

1

C0
+ P0

)
< |r0| <

(
1

C0
+ P0

)
α (4.28)

From (4.28), it can be seen that if P0 = ∞, the trackable values of

steps cover the entire real number line. This implies that step of any

size can be tracked by the controller. But if C0 = ∞, the trackable

steps become α
(

1
C0

+ P0

)
< |r0| < (P0) β. Thus (4.28) forms the

design equation for the determination of trackable domains.

Considering again the closed system shown in FIGURE 4.8, and let

the input be r(t) = r0us(t). The steady state error for the closed-loop

system in general is given by

ess = lim
s→0

r1

1 +GC(s)GP (s)

This definition might not work in QLC settings. The steady state

error for a closed-loop QLC system is given by

ess =
r1

C0P1
⇐⇒ αP1 ≤ βP1 (4.29)
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whereas P1 = lims→0 sGP (s). From above equation it can be seen

that ramp track-ability is completely dependent upon P1.

4.2.3 Tracking Quality Indicators

In this section some relations will be developed that will be used to

quantify the quality of reference tracking. The tracking is of two

types: steady state tracking and dynamic tracking. The last sec-

tion presented the concepts of steady state tracking. In this section,

dynamic tracking will of major focus.

Considering FIGURE 4.7(b) again, representing quasilinearized sys-

tem, in which r(t) is the colored Gaussian process having standard

deviation of σr and expectation of µr. As usual the constant Na, µû

are the solutions of

Na − FN (σû, µû) = 0 (4.30a)
µr
P0
− µû
P0C0

(4.30b)

Whereas

ma =
µr
P0
−
(

1

P0C0
+Na

)
µû (4.31)

To have good tracking, the value of σê and µê must as small as

possible. These values are given by

σê =

∥∥∥∥ 1

1 +NaGP (s)GC(s)

∥∥∥∥
2

σr (4.32a)

µê =
µû
C0

(4.32b)

The quality of dynamic tracking can be quantified using the defi-

nition of Saturating Random Sensitivity (SRS) function. Similarly,

Amplitude truncation and rate saturation are two other quantifiers

of tracking. As it will be explained that the definition of SRS remains

the same as suggested for symmetric case. However, some will be
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manipulated appropriately to incorporate asymmetry as well. Fur-

thermore, rate saturation and steady state tracking presented here

will open new insights regarding tracking indicators.

The Saturating Random Sensitivity (SRS) function is defined as the

standard deviation of the error signal in the quasilinear system of

FIGURE 4.7(b) normalized by σr

SRS(Ωr, σr, µr) =

∥∥∥∥ Fr(s)

1 +NaGP (s)GC(s)

∥∥∥∥
2

(4.33)

The definition of SRS given in (4.33) serves both symmetric and

asymmetric cases. Note, however, that the symmetry property is

embedded by the quasilinear gain Na, whereas Na is smaller in the

asymmetric case as compared with the symmetric case. SRS satisfies

the following properties:

1. ∀ Ωr > 0, lim
σr→0

SRS(Ωr, σr, µr) = SRS(Ωr, σr, µr) =
∥∥∥ Fr(s)
GP (s)GC(s)

∥∥∥
2

; µr ∈ TDSTEP

1; Otherwise

2. ∀ σr > 0, lim
Ωr→∞

SRS(Ωr, σr, µr) = 1

3. ∀ σr > 0, lim
Ωr→0

SRS(Ωr, σr, µr) =
∣∣∣ 1

1+N0C0P0

∣∣∣
Where N0 is the solution of

N0 − FN
(∣∣∣∣ Fr(0)C0

1 +N0P0C0

∣∣∣∣σr, µû) = 0

µr
P0
− µû
C0P0

− FM
(∣∣∣∣ Fr(0)C0

1 +N0C0P0

∣∣∣∣
2

σr, µû

)
= 0
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4. ∀ σr > 0, Ωr > 0 lim
Ωr→±∞

SRS(Ωr, σr, µr) =
1 ; |P0C0| 6= 0∥∥∥ Fr(s)

1+GP (s)GC(s)

∥∥∥
2

; |P0| =∞

Undefined ; Otherwise

Where Na is the solution of

Na − FN
(∥∥∥∥ Fr(s)GC(s)

1 +NaGC(s)GP (s)

∥∥∥∥
2

σr, µû

)
= 0

FM

(∥∥∥∥ Fr(s)GC(s)

1 +NaGC(s)GP (s)

∥∥∥∥
2

σr, µû

)
= 0

To ensure good tracking µr ∈ TDSTEP , then followings can be used

to characterize SRS(.)

(a) Saturated Random DC Gain: this quantity represents the

sensitivity of error signal against constant reference and is de-

fined by

SRSDC(µr) = lim
σr→0Ωr→0

SRS(Ωr, σr, µr)

(b) Saturated Random Bandwidth: this parameters represents

the bandwidth of SRS(.) as the function of σr and µr and is

given by

SRSBW (µr, σr) = min
Ωr>0

{
SRS(Ωr, σr, µr) =

1√
2

}
(c) Saturated Random Resonant Frequency: the value of fre-

quency ωr at which maximum of SRS(.) occurs as a function of

σr and µr is called saturated random resonant frequency. It is

defined as

SRSωr(µr, σr) = arg sup
Ωr>0
{SRS(Ωr, σr, µr)}
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(d) Saturated Random Resonant Peak: the maximum value

of SRS(.) as a function of σr and µr is called saturated random

resonant peak. It is defined as

SRSM(µr, σr) = sup
Ωr>0
{SRS(Ωr, σr, µr)}

From the above analysis it can be seen that, all these performance

parameters are bases on the frequency content of reference signal.

With inputs of random references, the frequency content is made

band-limited by pre-filtering. The transfer function Fr(s) is serv-

ing the purpose of pre-filtering. Base on above definition following

indicators are defined.

Static Un-Responsiveness Indicators (I1): when the response

has reached steady state, the unresponsive-ness of the system to the

changes in inputs is quantified by this parameter, which is defined

by

I1 = SRSDC(µr) (4.34)

Dynamics Indicator (I2): this parameter quantifies the magnitude

of dynamics in the system and is defined by

I2 =
Ω

SRSBW (µr, σr)
(4.35)

Differentiator Between Statics and Dynamics (I3): this pa-

rameter distinguishes between I1 and I2 and quantifies the relative

intensity of latter two. This is defined as

I3 = min

{
SRSM(µr, σr)− 1,

Ω

SRSBW (µr, σr)

}
(4.36)

Amplitude Truncation Indicator (I0): this parameter measure

the degree of possibility of saturation activation. If µ ∈ TrackableDomain (TD),

the value of this parameter is finite and if µ ∈ Trackable Domain (TD),
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I0 =∞. Under the assumption that µr ∈ TD, it is defined as

I0 = max

 σr∣∣∣ 1
C0

+ P0

∣∣∣ β − µr ,
σr∣∣∣ 1

C0
+ P0

∣∣∣α− µr
 (4.37)

Rate Saturation (I0(rate)): if the plant has pole(s) at origin, the

trackable domain of steps will be infinite and I0 = 0. But this results

in another problem called rate saturation. Rate saturation measures

the ability to track the ramps inputs. It is defined as

I0(rate) = max

{
σrΩ

|P1|β
,
σrΩ

|P1|α

}
(4.38)

All these parameters give enough information about a system.

4.2.4 Disturbance Rejection Performance

The disturbance rejection will be demonstrated using the system

configuration of FIGURE 4.7(a) and using the example plant and

controller of (4.22). Assuming that r(t) = 0 and d′(t) is the Normal

white noise with σd = 1 and µd = 0. The filter transfer function Fd(s)

is a third order Butterworth filter with bandwidth of d = 2. Under

these conditions the equation of stochastic linearization become

Na − FN(σû, µû) = 0 (4.39a)

FM(σû, µû) = 0 (4.39b)

Using the parameter of system in (4.22)

σû =

∥∥∥∥∥ 400
√

1.5

(s3 + 4s2 + 8s+ 8)(s2 + 10s+ 50Na)

∥∥∥∥∥
2

(4.40)

The property of disturbance rejection is investigated under following

cases:

• α = −2, β = 2



Chapter 4: Quasilinear Control 77

• α = −1, β = 3

• α = −0.5, β = 3.5

For every case, the system of simultaneous equations (4.39) is solved

to obtain the value of unknowns σû and Na. These values are used to

calculate the measure of ASYMMETRY. Case-1 gives A = 0, case-2

gives A = −0.3 final case produces a value of A = −0.73. Plots of

y(t), y′(t) against d(t) are shown in FIGURE 4.9 From these plots it

can be seen that as the degree of ASYMMETRY increases, the dis-

turbance rejection performance deteriorates. As this work considers

the symmetric saturation only, so good rejection of disturbance will

be attained.

Figure 4.9: Disturbance Rejection

4.3 Saturating Root Loci and Error Loci

In the previous section steady-state and transient performance of the

systems were analyzed. This section is devoted to the development

of root loci for the analysis of quasilinear system under saturation
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actuation. When the system is quasilinearized, the available is trun-

cated by the quasilinear gain to avoid saturation actuation. The

root locus indeed begins at poles of the systems but it finishes pre-

maturely before infinity due gain truncation. These points where the

loci terminate are called truncation points.

Such a kind of truncation can definitely initiate the generation of

error in the steady state performance. So another locus is developed

for the sole purpose of completeness to give a graphical view, how the

quasilinearization might the error performance of the system. Such

a locus is truncation error (TE) locus.

Two significant works can be found in this regard. The pioneers

(Shinung Ching Et. El from MIT) of Modern Quasilinear Control

Theory have developed the root locus methods for the analysis of

systems containing symmetric saturations. This is called S-locus

[11]. While Hamid-Reza Ossareh have applied and extended theories

for the systems containing asymmetric saturations. In this work, a

brief but comprehensive treatment of both works will be presented.

4.3.1 Fundamentals of S/AS Root Locus

Considering the system of FIGURE 4.10(a) where GP (s) is the plant,

KGC(s) is the controller, the filter Fr(s) is third order Butterworth

filter with bandwidth of ‖Fr(s)‖2 = 1. The reference input r(t) being

white noise is the filtered through Fr(s) and afterwards it is scaled

with σr and shifted by µr. The stochastic linearization of system

in FIGURE 4.10(a) gives the system in FIGURE 4.10(b), where the

parameters Na and µû are the solutions of

Na − FN
(
K

∥∥∥∥ Fr(s)GC(s)

1 +KNaGC(s)GP (s)

∥∥∥∥
2

σr, µû

)
(4.41a)

−µr
P0
− µû
KC0P0

− FM
(
K

∥∥∥∥ Fr(s)GC(s)

1 +KNaGC(s)GP (s)

∥∥∥∥
2

σr, µû

)
(4.41b)
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Figure 4.10: The Effect of Quasilinearization

Based on the solution of above system, the parameter ma is given by

ma =
µr
P0
−
(

1

KP0C0
+Na

)
µû

The objective is to use the theory of quasilinear system for the de-

sign tracking controllers. To do this, note from Figure-4.10(b) that

the quasilinear bias ma and the quasilinear gain Na enter the system

as an additional disturbance input and the gain, respectively. Also,

both are the functions of controller gain as can be seen from (4.41).

So the effects of controller gain should be studied on the locations of

poles and zeros of quasilinear system. This investigation can graph-

ically be represented by two loci: by the classical root locus, and

another one called tracking error locus. Together, they are termed

as performance loci.

Let the product of controller gain K and quasilinear gain Na be

effective gain and denoting it by Ke = KNa, the system of equations
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in (4.41) becomes

Ke −KFN
(
K

∥∥∥∥ Fr(s)GC(s)

1 +KeGC(s)GP (s)

∥∥∥∥
2

σr, µû

)
(4.42a)

−µr
P0
− µû
KC0P0

− FM
(
K

∥∥∥∥ Fr(s)GC(s)

1 +KeGC(s)GP (s)

∥∥∥∥
2

σr, µû

)
(4.42b)

The mean of the error signal µê is dependent upon µû and µû is itself

the function of K, this implies that

µê(K) =
µû(K)

KC0
(4.43)

Before the procedure of sketching the performance loci is outlined,

some definitions are introduced.

AS-Poles: the closed-loop transfer function of the system in 4.10(a)

after quasilinearization shown in 4.10(b) r → ŷ can be written as

T (s) =
FP (s)GC(s)

1 +KeGC(s)GP (s)
(4.44)

As the transfer function in (4.44) is developed under the assumption

of asymmetric saturation non-linearity, the poles of T (s) are called

AS-Poles.

AS-Root Loci: the paths traced by AS-poles as the function of K

is called the AS-root loci.

TE-Locus: the plot of µê(K) as K varies from 0 to ∞ is the TE

(Tracking Error) locus. Both AS-Poles loci and TE locus are the

continuous functions of K under the following assumption that µê(K)

and µû(K) are unique ∀ K > 0.

From (4.44) it can be seen that 0 < Ke < K because 0 < Na <

1. This implies that AS-root locus is the proper subset of classical

root locus. Therefore, the AS-root locus is a proper subset of the

usual linear root locus. The sketching of root locus requires certain
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information as is the case with usual root locus. For instance, the

sketching of root locus (RL) requires, the points of origin, the points

of termination etc. In the classical RL, the points of terminations

are zeros of the closed-loop system. But in quasilinear system, the

RL might terminate prematurely due to presence of saturation. In

the following sub-section, a detailed procedure for the AS-RL will be

developed.

4.3.2 Root Loci Procedure

The procedure for sketching AS-RL is quite similar to the classi-

cal RL with the exceptions that the determination of termination

points and truncation points is required, since the RL is limited by

asymmetric saturation.

AS-RL Termination Points: let K∗e be the terminating gain, that

is

K∗e = lim
K→∞

Ke(K) (4.45)

If K∗e =∞, the termination points meet the open-loop zeros. But as

Ke = KNa and 0 < Na < 1, so K∗e might be finite. As it turns out,

to compute K∗e the following two equations in the unknowns φ∗ and

η∗ must first be solved

φ∗ −

∥∥∥∥∥ Fr(s)GC(s)

1− 2α√
2πφ∗

exp(−η∗2
2 )GC(s)GP (s)

∥∥∥∥∥
2

σr = 0 (4.46a)

µr
P0
− η∗φ∗

P0C0
= α exp

(
η∗√

2

)
(4.46b)

Before the solution of (4.46) to determine K∗e is presented, some

properties are in order. The solution of (E4.46) has the following

properties:

1 φ∗ ≥ 0

2 As φ∗ ≥ 0, η∗ =
√

2 erf−1
(

µr
α −α
α

)
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3 The point (φ∗, η∗) =
(

0,
√

2 erf−1
(

µr
α −α
α

))
always satisfies the

system (4.46)

4 Assuming that Ke and µû(K) exist and are unique for any value

of K, then

(a) If φ∗ = 0 is the only solution, then K∗e = ∞ and AS-RL

meets the open zeros of T (s)

(b) If φ∗ > 0 then, K∗e = 2α√
2πφ∗

exp(−η∗2
2 )

5 From (4.46) if P0C0 = ∞, η∗ =
√

2 erf−1
(

µr
α −α
α

)
. This also

implies that ∗ is independent of ∗

6 From (4.46) if P0C0 6=∞, then

φ∗ =
P0C0

η∗

[
µr
P0
− α erf(

η∗√
2

)

]
Based on above discussion the definition of AS-poles can re-narrated

as follows. As the solution K∗e always exists under the assumption

that Ke and u(K) exist and are unique for any value of K, the AS-

poles are the poles of

T (s) =
K∗eGC(s)GP (s)

1 +K∗eGC(s)GP (s)
(4.47)

The properties of AS-RL might imply that performance never enter

the right half s-plane.

AS-RL Truncation Points: The AS-truncation points are intro-

duced based on the notion of the trackable domain TD and the qual-

ity indicator I0 introduced in section 4-2. In the discussion to fol-

low, for simplicity, it will be assumed that C0 > 0, P0 > 0, and

µr → TDfor all K > 0. The indicator I0 , being the function of K
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is defined as

I0(K) = max

 σr(
1

KC0
+ P0

)
β − µr

,− σr(
1

KC0
+ P0

)
β − µr

 (4.48)

Equation (4.48) indicates that I0 is the function of K, this is just to

the fact that in this analysis K is a variable parameter. As a rule

of thumb, amplitude truncation is typically small when I0(K) < 0.4.

Based on this idea, the following definition for the AS-RL-truncation

points can be defined as the poles of

T (s) =
Ke(K0)GC(s)GP (s)

1 +Ke(K0)GC(s)GP (s)
(4.49)

Where

K0 = minK : I0(K) = 0.4

As the AS-locus is the subset of classical root locus, the AS-truncation

points must occur before the termination points in classical RL as K

tends to infinity. Black squares are used to symbolize the locations

of AS-truncation points on the AS-locus.

Gain Calibration: Finding unknown K for a given point of AS-

RL is called RL calibration. Let s̃ is a point on AS-RL, then there

exists a unique K̃, such that 0 < Ke(K̃) < K∗e . Such a value of gain

satisfies

1 +Ke(K̃)GC(s̃)GP (s̃) = 0 (4.50)

Whereas Ke(K̃) is the solution of

Ke(K̃)−KFN

(
K

∥∥∥∥ Fr(s)GC(s)

1 +Ke(K̃)GC(s)GP (s)

∥∥∥∥
2

σr, µû

)
(4.51a)

−µr
P0
− µû
KC0P0

− FM

(
K

∥∥∥∥ Fr(s)GC(s)

1 +Ke(K̃)GC(s)GP (s)

∥∥∥∥
2

σr, µû

)
(4.51b)



Chapter 4: Quasilinear Control 84

Also from (4.50)

Ke(K̃) = − 1

GC(s̃)GP (s̃)
(4.52)

In (4.51) Na and µû are the unknowns which in turn are used to

calculate K̃

4.3.3 Tracking Error Locus

Tracking error (TE) can be sketched using equations (4.42) and

(4.43). The plot of TE against K may be an increasing function,

decreasing or non-monotonic function. The concept of TE will be

explained using the system of (4.53) and using the system of FIG-

URE 4.10.

GP (s) =
1

s+ 1
, GC(s) = 1, σr = 1 (4.53)

Figure-4.11 shows TE loci for three cases:

• Case-1: α = −1.5, β = 0.5, µr = 0

• Case-2: α = −1.5, β = 0.5, µr = 0.5

• Case-3: α = −1.5, β = 1.5, µr = 0.5

From FIGURE 4.11, it can be seen that first case produces increases

error response, second case produces non-monotonic error response,

while the last case produces decreasing response. Another point

can be noted that error does not go to zero in any case. So this

locus can be a good check for deciding on the final controller design.

Following discussion about the properties of µû(K) provides some

rules of thumb for TE sketching. These properties give us the value

of locus at points of origination, termination and at intermediate

point. These information proves enough for the sketch of TE locus.

Assuming that α ≤ 0 ≤ β and (4.46) produces unique solution for

each value of K, then
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Figure 4.11: TE Loci [48]

1 lim
K→0+

µhate(K) =

{
µr P0C0 6= 0

0 P0C0 = 0

2 lim
K→0+

µhate(K) = η∗φ∗

C0

3 If µr
P0
> α+β

2 , then µê(K) = 1
1+KC0P0

whereas K = 1

C0( 2µr
α+β−P0)

For instance, applying the above conclusions to system of (4.53) with

µr = 1, α = 0.5, β = 1.5, following values of µhate(K) are obtained.

µê(0) = 0 µê(∞) = 0.18 µê(1) = 0.5

The following theorem provides structural properties of the TE locus.

Assuming that α ≤ 0 ≤ β and (E4.46) produces unique solution for

each value of K, then

1 If C0 =∞, then µê(K) = 0 for any K

2 If lim
K→0+

µê(K) = 0, then one of the following could be the reason

(a) K∗e =∞

(b) C0 = 0

(c) µr
P0

= α+β
2
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3 If P0 6=∞, then µr − P0β ≤ µê(K) ≤ µr − P0α

4 µê(∞) < µê(0), then TE is decreasing function of K

5 µê(0) < µê(∞), then TE is increasing function of K

4.3.4 Control Design with S/AS Root Locus

In the theory of linear systems, the sizes of trackable signals are deter-

mined using the time domain performance indicators of the system,

they are overshoot, rise time, etc., of the step response. For random

references, though, the permissible domains are established on the

quality indicators I2 and I3 as defined and described in section 4.2.

They are repeated here for reference purposes.

I2 =
Ω

SRSBW (σr, µr)
(4.54a)

I3 = min

{
SRSM(σr, µr)− 1,

Ω

SRSBW (σr, µr)

}
(4.54b)

Here, Ω is the bandwidth of the input coloring filter, BW is the

random bandwidth and M is the resonant peak at resonant frequency.

In classical theory the design process is performed such that the

dominant closed-loop poles are placed in some admissible region of

left half s-plane. Such admissible regions are defined using the per-

formance indicators I2 and I3. The aim of design is to select gain

K so that all AS-poles are within the permissible domain and posi-

tioned earlier than to the AS-truncation points. The value of gain

K should be chosen in a way static responsiveness is gained along

with amplitude truncation is completely avoided by the closed-loop

system. The design will be explained with the example of (E4.55)

GP (s) =
(s+ 20)

(s+ 15)(s+ 0.5)
, GC(s) = 1, σr = 1 (4.55)

FIGURE 4.12(a) gives the AS-locus for the system in (E4.55) along
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Figure 4.12: AS-RL Design

with a sketch of permissible region of poles locations. From here

it can be observed, that the truncation, denoted by solid square is

outside the permissible region, so this need redesign. One possible

solution will be to increase the saturation level. When saturation

bound is increased to a value of 1.3, the value of K∗e becomes 104.

When the locus is sketched again with new gain range, the resulting

plot is shown in FIGURE 4.12(b). From the new locus, it can clearly

be concluded that now the complete is within the permissible region,

so no amplitude truncation will occur. The steady state performance

requires that ess < 0.05, this implies that 1
1+KC0P0

< 0.05 or K > 7.2.

Therefore, to achieve both good dynamic tracking and steady state

approachability, K must satisfy 7.2 < K < 39.

Suppose that the steady state specifications require for |µê(K)| < µ̄.

According to this requirement, a permissible area for TE can be

presented (see the shaded area in FIGURE 4.13. Then the design

objective would be to choose a value of K, such that the TE locus

stays within the permissible region. Returning to the example, sup-

pose that the specifications require |µê(K)| < 0.05. The TE locus of

the system, along with the permissible region, is plotted in FIGURE

4.13. As it follows from this diagram, the TE loci for β = 0.92 and

α = 1.3 are in the admissible domain for K > 17 and K > 7.6,

respectively. Combining the above results, we conclude that, for the

case of β = 1.3, for good static and dynamic tracking, K must satisfy

7.6 < K < 39. Selecting K = 35, the quality of tracking for both
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Figure 4.13: Tracking Quality in Steady State [47]

β = 0.92 and β = 1.3 in FIGURE 4.13. Clearly, the quality of track-

ing is good for β = 1.3, but poor for β = 0.92 because of amplitude

truncation. There may be cases where the AS-poles and TE cannot

be placed in their respective admissible domains simultaneously.



Chapter 5

Quasilinear Controller Design

This is the concluding chapter of this work. This will begin with

the design process of step tracking controllers. The design process

will be elaborated with some examples. After the process and its

requirements are established, this will be applied on the proposed

plant of this work, the MLS plant. The chapter will end with a

comparative analysis of the all controllers investigated in this work.

Consider the feedback system of FIGURE 5.1(a) where

5.1 Tracking Controller Design

GP (s) =
1

s2 + 0.4s+ 1
(5.1)

And satα(u) is the symmetric saturation function shown in FIGURE

5.1(b). The problem is to design a controller, Fr(s), so that the

closed loop system tracks unit step reference signal satisfying the

following specifications:

Steady state error ≤ 1%; Overshoot ≤ 5%

Settling Time ≤ 1sec

89
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Figure 5.1: Step Tracking in Quasilinear System

Since there are no rigorous methods for designing step-tracking con-

trollers for systems with saturating actuators, one usually designs

a controller assuming that the actuator is linear and then verifies

the performance using simulations. Under such assumptions, for the

system in (E5.1) a controller can be given as (satisfying the given

specifications above)

GC(s) =
22s+ 200

0.01s+ 1
(5.2)

The performance of the controller is investigated for four values of

α : α = 25, 10, 5, 0.5. As the saturation bound is tightened, the

performance of the controller degrades. The controller shows the

best performance for the highest value of α and its performance

deteriorates badly for α = 0.5. All these conclusions are explained

with the help of figures, from FIGURE-5.2(a) through FIGURE-

5.2(d). from these results it can clearly be seen that the selection

of saturation level strongly determines the resulting performance.

This section is based upon the development of such methods. The
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Figure 5.2: Step Tracking for Various Value of α

development here entails from the time domain design methods of

Chapter-4. Chapter-4 is concerned about the design of controllers

for the random reference tracking. In this section, the design process

of step tracking controllers will be expounded.

Fr(s) =

√
3

Ω

Ω3

s3 + 2Ωs2 + 2Ω2s+ Ω3
(5.3)

The system block-diagram representing the theme this development

is expounded in FIGURE-5.3(a). For the tracking of random refer-

ences, the reference signal is passed through a Butterworth filter as

given by (E5.3), but in this section, the filter could be based on sec-

ond order prototype system. If the second order filter of type given
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by (E5.4) is used, the resulting system configuration is FIGURE-

5.3(b).

Figure 5.3: Tracking the Random and Step References

Fd(s) =
ω2
n

s2 + 2ζωns+ ω2
n

(5.4)

Where ζ and ωn are selected such that the output of Fd(s), r(t) satis-

fies the given specifications above. The goal is to design a controller

GC(s), if possible, such that the output y(t) tracks well r(t) accord-

ing to the specifications. This section is concerned with following

design steps.

1 Controller Existence: before the actual design process be-

gins, it is mandatory that the given system and the specifica-

tions be explored to determine the existence of a controller.

2 The Adjoint Bandwidth: in this step, the dynamics part of

the specifications is transformed in a way that they become the

specifications for stochastic signal tracking. This transforma-

tion results in adjoint bandwidth denoted as Ωa.

3 Controller Design: design a controller for the system of

FIGURE-5.3(a) with Ω = Ωa using the S-root locus tactic which
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is a special case of AS-root locus and is only applicable to sym-

metric systems.

4 Explore Possibilities: Finally, use the controller designed

in above stage and design the filter called pre-filter as shown

in FIGURE-5.3(b). Simulate the system and the design does

not satisfy the specifications, explore other design possibilities.

This two-fold design process gives extra freedom to the designer,

called two-degree of freedom.

This design process signifies two key points:

1 The design process creates the connection between adjoint band-

width and the step tracking specifications.

2 It sees the filtered signal to be tracked rather than the reference

itself. This is the freedom bestowed by this design process.

The above tactic may guide to a conformist design since the adjoint

bandwidth may be too large. Nonetheless, as established in this

section, the projected technique is usefully systematic and practical.

The inventive contribution of this section is in engaging Quasilinear

Control Theory to deliver a straight technique for linear step tracking

controller design in systems with saturating actuators.

Underneath, a necessary and sufficient condition for existence of a

step-tracking controller satisfying steady state specs is presented. It

will be followed by a method of calculating the adjoint bandwidth.

Lastly, the QLC method with the anti-windup technique will be com-

pared.
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5.1.1 Conditions for the Existence of Controller

Consider the system of FIGURE-5.3(b) and the following steady

state specifications:  r0 ≤ r∗0

ess =
lim
t→∞

|e(t)|
r0

≤ e∗ss
(5.5)

Where r∗0 is the target step-size, e(t) is the tracking error, e(t) =

r(t)− y(t), and e∗ss < 1. As it is case most of the time, it is assumed

that only positive steps are essential to be tracked. P0 and C0 are

representing the dc-gains of the plant and controller, respectively.

The following proposition provides a necessary and sufficient condi-

tion for existence of a controller that satisfies the above specifications

in (E5.5).

Controller Existence Condition: assuming that P0 > 0, C0 > 0,

then there exists a controller GC(s), if

r∗0 ≤
r0P0

1− e∗ss
(5.6)

(E5.6) is a necessary and sufficient condition for existence of a con-

troller satisfying the steady state part of the specifications. It is the

necessary condition for existence of a controller satisfying transient

response specifications as well.

Returning to the motivating example of (E5.1), we observe that for

α = 5, the value of P0α
1−e∗ss

is 5.05, and therefore, the condition for

existence of a unit step tracking controller is satisfied. On the other

hand, for α = 0.5, P0α
1−e∗ss

= 0.505, and therefore, no controller satisfy-

ing the specs exists.
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5.1.2 Adjoint Bandwidth

Assume that the dynamic part of step-tracking specifications is as

follows:
Overshoot ≤ OS∗%

Settling Time ≤ t∗ssec

Rise Time ≤ t∗rsec

(5.7)

Let Fd(s) be the nominal second order transfer function (E5.4),

whose step response satisfies specifications (E5.7). Then, the ad-

joint bandwidth is given by

Ωa =
√

2 ωn exp

{
− σ

ωd
tan−1

(ωd
σ

)}
(5.8)

Whereas σ = ζωn and ωd = ωn
√

1− ζ2. The adjoint bandwidth is

demarcated by equating the maximum rate of change of r(t) in Figure

FIGURE-5.3(b) with the standard deviation of the rate of change of

r(t) in FIGURE-5.3(a). It can be shown that the maximum rate of

change of r(t) in FIGURE-5.3(b) is given by

max t ≥ 0ṫ(t) = ωn exp

{
− σ

ωd
tan−1

(ωd
σ

)}
r0 (5.9)

and the standard deviation of the rate of change of r(t) in FIGURE-

5.3(a) is the H2-Norm of sFΩ(s), that is

‖sFΩ(s)‖2 =
Ωa√

2
r0 (5.10)

Thus equating (E5.9) and (E5.10) the result in (E5.8) is obtained.

For the motivating example of (E5.1), based on the dynamic part of

the specifications, the forward-path transfer function will be

Fd(s) =
34

s2 + 8s+ 34
(5.11)

This results in adjoint bandwidth of Ωa = 3.8.
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5.1.3 Exploring Design Possibilities with Examples

In this section, the method developed so far will be illustrated with

several examples. The section will begin with the complete design

process for (E5.1) and various time domain specifications will be

investigated to determine the usefulness this methodology.

Example-1: considering the example of (E5.1), FIGURE-5.4(a)

displays the permissible region in grey and the S-root locus with

α = 25. The adjoint bandwidth for the system is Ωa = 3.8. Following

controller is selected

Figure 5.4: S-Locus of Illustrative Example-1

Figure 5.5: Tracking Performance of the System in Example-1

GC(s) = K
22s+ 200

0.1s+ 1
(5.12)
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For this example, the termination and truncation points of the S-root

locus coincide with the open loop zeros; therefore, the S-poles should

be selected within the permissible region. For K = 1, the saturat-

ing locus of closed loop system is shown in FIGURE-5.3(a) is given

in FIGURE-5.5. Clearly, the value of random reference tracking is

good.

Since the unit step is in the traceable area when α = 25, the con-

troller given by (E5.12) is used in FIGURE-5.3(b). The resulting

response is shown in FIGURE-5.5. It shows that the specifications

have been satisfied and the quality of tracking is satisfied.

With α = 10, using the same controller (E5.12), the S-root locus of

the motivating example is shown in FIGURE-5.5(on right). Clearly,

the S-root locus ends before arriving the permissible area. So, the

quality of tracking is poor for random references as demonstrated in

FIGURE-5.6(a). FIGURE-5.6(b) displays the tracking quality for

the system of FIGURE-5.3(b). As can be seen, overshoot does not

satisfy the specs and the quality of tracking is poor. When is even

reduced, the termination points move closer to the open loop poles,

and the quality of tracking degrades further.

Figure 5.6: Tracking Performance for α = 10 (Example-1)
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Example-2: Consider the system of FIGURE-5.3(b) with

GP (s) =
116

(s2 + 20s+ 116)(0.02s+ 1)
(5.13)

And α = 1.5. The objective is to design a pre-filter Fd(s) and a

controller GC(s) to realize the following step-tracking specifications:

r0 ≤ 1.5

ess ≤ 2.5%

POS ≤ 5%

ts ≤ 1

(5.14)

First, the condition (E5.6) be satisfied and it come out to be r∗0 =

1.5 < P0α
1−e∗ss

= 1.54, so this requirement is met. As far as the dynamic

part of the specifications is concerned, since they are same as that

in Example-1, Fd(s) is given by (E5.11) and the adjoint bandwidth

is Ωa = 3.8 as before.

The poles of the plant GP (s) are at s1,2,3 = −104j,−50. Clearly,

the complex conjugate poles are dominant. It can be demonstrated

that the concepts dominant poles entails from the classical control

theory without significance deterioration. Therefore, a controller be

designed such the given dominant poles enter the dominant region.

After some design iteration following controller is suggested.

GC(s) = K
s+ 30

0.01s+ 1

The S-root locus of the resulting system is shown in FIGURE-5.7.

With the controller gain K = 1.5, the S-poles are within the admis-

sible domain and prior to the truncation points (black squares on the

S-root locus); thus, both steady state and dynamic specifications are

satisfied. The resulting performance of systems of FIGURE-5.3 is
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illustrated in FIGURE-5.8, respectively. Clearly, step tracking spec-

ifications are satisfied.

Figure 5.7: S-Locus for Example-2

Note that in FIGURE-5.8(a), the quality of random reference track-

ing deteriorates at two time moments (around t = 2s and t = 4s).

This is because with the selected K, the S-poles are close to the

S-truncation points. However, since r0 = 1 is inside the trackable

domain, tracking of the unit step in FIGURE-5.8(b) is good.

Figure 5.8: Random and Step Reference Tracking for Example-2

5.2 Controller Design for MLS Plant

From (E2.28)

Y (s)

V (s)
= − 3473

s3 + 213s2 − 980s− 208363
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It state space representation will be
ẋ1

ẋ2

ẋ3

 =


0 1 0

0 0 1

208363 980 −213



x1

x2

x3

+


0

0

−3473

 v (5.15a)

y =
[
1 0 0

]
x1

x2

x3

 (5.15b)

5.2.1 Quasilinear Controller Design for MLS Plant

Considering the presence of saturation non-linearity

v = satα(u) (5.16)

As the plant is a type-0 system, so the following servo type control

law is used for the design of feedback controller

u = −K1x + kiη =
[
−K1 ki

] [x
η

]
(5.17)

Where

η̇ = r − y = r −Cx

From (E5.15a) and (E5.17)
ẋ1

ẋ2

ẋ3

η̇

 =


0 1 0 0

0 0 1 0

208363 980 −213 0

1 0 0 0



x1

x2

x3

η

+


0

0

−3473

0

 v +


0

0

0

1

 r(t)
(5.18)

The control law proposed in (E5.17) ensures that the state vector

x(t), η(t) approach their specified steady state values of x(∞), η(∞)

as the step input r(t) approaches its steady state value r(∞) = r.
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An error vector can be defined as

[
x(t)− x(∞)

η(t)− η(∞)

]
given the error

input to ve(t) = v(t)− v(∞). Based on this fact the above equation

can be rewritten as

[
ẋe(t)

η̇e(t)

]
=


0 1 0 0

0 0 1 0

208363 980 −213 0

1 0 0 0


[
xe(t)

ηe(t)

]
+


0

0

−3473

0

 ve(t)

Using the controller law in (E5.17) along with saturation definition

(E5.16)

[
ẋe

η̇e

]
=


0 1 0 0

0 0 1 0

208363 980 −213 0

1 0 0 0


[
xe

ηe

]
+


0

0

−3473

0

 satα

([
−K1 ki

] [xe
ηe

])

Using the stochastic linearization of saturation non-linearity and let-

ting
[
−K1 ki

]
satα(ve(t)) = Nve(t)

Whereas

N = erf

(
α + µu√

2σ(ve)

)
From the definition of N , it can be seen that value of N is depen-

dent upon the variance of ve(t). Assuming that the reference can

be modeled by Gaussian process, the value of N is N = 0.63, given

saturation level of ±18. With this the error relation can be described
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by

[
ẋe

η̇e

]
=


0 1 0 0

0 0 1 0

208363 980 −213 0

1 0 0 0


[
xe

ηe

]
+N


0

0

−3473

0


([
−K1 ki

] [xe
ηe

])

[
ẋe

η̇e

]
=


0 1 0 0

0 0 1 0

208363− 2188k1 980− 2188k2 −213− 2188k3 2188ki

1 0 0 0


[
xe

ηe

]

The controller parameters in the above equation can be calculated

using arbitrary pole placement design. The design has been com-

pleted for a settling time of 0.3 seconds and a percentage overshoot

of 5%. The parameters come out to be k1 = −2952.8, k2 = 19.21,

k3 = −3459.8 and ki = −13649. The controller implementations and

the simulation results are shown in FIGURE-5.9 and FIGURE-5.10

respectively.

5.2.2 Simulations and Results

From FIGURE-5.10 it can be seen that all goals have been achieved.

The input reference is tracked perfectly and the saturation is never

activated. Thus it represents the best solution.

Figure 5.9: QLC Implementation
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Figure 5.10: QLC Performance



Chapter 6

Cobclusion and Future Work

In this chapter, a comparison of all controllers will be presented.

6.1 Conclusion

In this section performance comparison will be presented with the

help of simulations. The results will be presented for step inputs,

sinusoidal inputs and random processes with unit variance and zero

mean. As it has been demonstrated in sections, QLC controller will

show the best performance.

6.1.1 Comparison with Loop-Shaping Performance

FIGURE-6.1 shows the performance comparison between Loop-Shaping

Control and the QLC control. Purple color (bold) lines are the in-

put curves. Solid line is showing the step input, while dashed line is

showing the disturbance input. From here it can be seen that tran-

sient response performance of QLC is far better than Loop-Shaping

control. Loop-shaping control produces a percentage overshoot of

nearly 80%, which could be very dangerous in practical situations

and it is completely unacceptable. While QLC control is producing

the percentage of about 4%, which is quite reasonable. Rise time per-

formance of loop-shaping is better than QLC. Both controllers offer

104
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excellent steady state performance and disturbance rejection capabil-

ity. It can be noted even a small trace has not been allowed to appear

in the input. FIGURE-6.2 shows the sketches for controller efforts.

From here it can be seen that QLC has superseded the performance

of loop-shaping. Controller effort is excellently reasonable according

to the design specifications. While essentially no practical controller

can be implemented for the required effort in loop-shaping control.

Table-1 gives quantitative comparison between the two controls.

Figure 6.1: Response of Loop-Shaping and QLC to Step Input and Distur-
bance

Loop Shaping QLC
Rise Time 0.05 Seconds 0.1 Seconds
Overshoot 80% 4%

Settling Time 0.3 Seconds 0.3 Seconds
Steady State Error 0 0
Controller Effort 62 Units Equal to Reference Input

Table 6.1: Loop-Shaping and QLC Performance Comparison

6.1.2 Comparison with ADRC Performance

FIGURE-6.3 shows the ADRC and QLC control system responses to

step and disturbance inputs. The inputs are shown in BOLD, while
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Figure 6.2: QLC and Loop Shaping Controller Efforts

the outputs are shown in normal lines. From here it can be seen that

both controller give excellent rejection to disturbance, ADRC is far

better than QLC. The transient response of ADRC is better than

that of QLC. But in steady state, ADRC has some error. FIGURE-

6.4 shows the controller efforts. From here it can be seen that the

effort from ADRC is almost unbounded, while the effort from QLC

remains within limits. Table-2 gives the quantitative comparison

between the two controllers.

ADRC QLC
Rise Time 0.052 Seconds 0.1 Seconds
Overshoot 0% 4%

Settling Time 0.057 Seconds 0.3 Seconds
Steady State Error 0.01 0
Controller Effort 6× 105 Units Equal to Reference Input

Table 6.2: ADRC and QLC Performance Comparison
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Figure 6.3: Response of ADRC and QLC to Step Input and Disturbance

Figure 6.4: QLC and ADRC Controller Efforts
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6.1.3 Remarks

From above discussion it can be seen that ADRC is the best control

in the sense that it does not required the model of the plant and its

tracking performance is good with a very small and ignorable steady-

state error. Although, steady-state performance of loop-shaping con-

trol is excellent, but it cannot be accepted because un-acceptable

transient response. Additionally, both controller exert unbounded

efforts, so they cannot be accepted in practical scenarios. The only

option remains that of QLC Control.

6.2 Future Work

Quasilinear control has presented a remarkable and practical control

method. This is attracting many researchers and will play excellent

role product development industry. But yet it has not got complete

maturity in terms of acceptability as an alternate to conventional

control schemes. Following concepts can be highlighted which need

the attention future researchers.

The phenomenon of Gaussianization must analytically be proven,

and the ac-curacy of stochastic linearization for Gaussianizing sys-

tems thoroughly studied. While such a study has been done for a

small class of systems, the general case has not been treated. The

method of cumulants may be applicable for the study of Gaussian-

ization.

QLC theory can be extended to other nonlinearities in the sensors

and actuators. For example, the performance loci and A-SLQR ap-

proaches can be extended to systems with saturating sensor, sensor

with deadzone or quantization, actuator with deadzone or relay, etc.

It has been observed that if the solution of quasilinear gain and

bias equations is not unique, the jumping phenomenon occurs. As

a future direction, this phenomenon can be thoroughly studied and
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analytically proven.

The results can be extended to the MIMO case. Multi-loop and state

feedback control of systems with decoupled saturating actuators is a

natural extension of this work.

The relationship between existence of solution to the quasilinear gain

and bias equations and existence of an invariant measure in the orig-

inal LPNI system can be explored.

Other linear control methods such as H-Infinity and LMI approaches

can be extended to the quasilinear control of S- and A-LPNI systems.

QLC can be applied to standard nonlinear control techniques (e.g.,

feedback linearization of systems with saturating actuators) for per-

formance analysis and controller design.

The robustness of the quasilinear gain and bias must be analyzed

with respect to the system parameters. Moreover, robustness of the

resulting QLC controllers must be quantified in terms of stability

and performance.

Lastly, a comprehensive experimental validation of the theory in an

industrial setting is important. The solutions of these problems will

provide a relatively complete theory of Quasilinear Control.
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